Question
Download Solution PDFआव्यूह A = \(\left[\begin{array}{cc}2 & 1 \\ -3 & 0\end{array}\right]\) का योगात्मक प्रतिलोम ज्ञात कीजिए।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFप्रयुक्त अवधारणा:
2 × 2 क्रम के आव्यूह \(\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]\) का निर्धारक = \(-\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]\)
गणना:
आव्यूह A का समायोजन = \(\left[\begin{array}{cc}2 & 1 \\ −3 & 0\end{array}\right]\)
आव्यूह A का योगात्मक प्रतिलोम = - \(\left[\begin{array}{cc}2 & 1 \\ −3 & 0\end{array}\right]\) = \(\left[\begin{array}{cc}−2 & −1 \\ 3 & 0\end{array}\right]\)
अतः, इनमें से 2 सही है।
Last updated on Jan 29, 2025
-> The Bihar STET 2025 Notification will be released soon.
-> The written exam will consist of Paper-I and Paper-II of 150 marks each.
-> The candidates should go through the Bihar STET selection process to have an idea of the selection procedure in detail.
-> For revision and practice for the exam, solve Bihar STET Previous Year Papers.