Question
Download Solution PDFयदि \(A = \begin{bmatrix} 2 \sin \theta & \cos \theta & 0 \\ -2\cos \theta & \sin \theta & 0 \\ -1 & 1 & 1 \end{bmatrix},\) है तो A(adj A) किसके बराबर है?
जहाँ I तत्समक आव्यूह है।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
सारणिक \(\begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}\)का प्रसार
Δ = a11 a22 a33 - a11 a23 a32 - a12 a21 a33 + a12 a23 a31 + a13 a21 a32 - a13 a31 a22 द्वारा दिया गया है।
A(adj A) = ∣ A ∣ I, जहाँ I तत्समक आव्यूह है।
गणना:
दिया है:
\(A = \begin{bmatrix} 2 \sin θ & \cos θ & 0 \\ -2\cos θ & \sin θ & 0 \\ -1 & 1 & 1 \end{bmatrix} \) और I तत्समक आव्यूह है।
⇒ \(\mid A\mid = \begin{vmatrix} 2 \sin θ & \cos θ & 0 \\ -2\cos θ & \sin θ & 0 \\ -1 & 1 & 1 \end{vmatrix}\)
C3 को लेकर प्रसार करने पर, हमें प्राप्त होता है,
⇒ ∣ A ∣ = 1{(2 sinθ × sinθ) + 2 cos2θ}
⇒ ∣ A ∣ = 1(2 sin2θ + 2 cos2θ)
⇒ ∣ A ∣ = 2(sin2θ + cos2θ)
⇒ ∣ A ∣ = 2 [∵ sin2θ + cos2θ = 1]
⇒ A(adj A) = ∣ A ∣ I
∣ A ∣ = 2 का मान रखने पर,
⇒ A(adj A) = 2I, जहाँ I तत्समक आव्यूह है।
∴ A(adj A) = 2I
Last updated on May 30, 2025
->UPSC has released UPSC NDA 2 Notification on 28th May 2025 announcing the NDA 2 vacancies.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced for cycle 2. The written examination will be held on 14th September 2025.
-> Earlier, the UPSC NDA 1 Exam Result has been released on the official website.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.