Question
Download Solution PDFयदि A = \(\left[ \begin{matrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \\ \end{matrix} \right]\) एक सममित आव्यूह है तो x क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFधारणा:
सममित आव्यूह:
- यदि आव्यूह A का परावर्त स्वयं आव्यूह A के बराबर हो तो वर्गाकार आव्यूह A को सममित कहा जाता है
- AT = A या A’ = A
जहां AT या A’ आव्यूह के परावर्त को दर्शाता है
- एक वर्गाकार आव्यूह A को सममित कहा जाता है यदि aij = aji सभी i और j के लिए
जहां aij और aji आव्यूह में मौजूद एक तत्व है।
गणना:
दिया हुआ:
A एक सममित आव्यूह है
⇒ AT = A या aij = aji
A = \(\left[ \begin{matrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \\ \end{matrix} \right]\)
तो सममित आव्यूहों के गुण द्वारा
⇒ a12 = a21
⇒ x – 3 = 3
∴ x = 6Last updated on May 30, 2025
->UPSC has released UPSC NDA 2 Notification on 28th May 2025 announcing the NDA 2 vacancies.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced for cycle 2. The written examination will be held on 14th September 2025.
-> Earlier, the UPSC NDA 1 Exam Result has been released on the official website.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.