ट्रेन द्वारा प्लेटफार्म को पर करना MCQ Quiz in हिन्दी - Objective Question with Answer for Train Crossing a Platform - मुफ्त [PDF] डाउनलोड करें
Last updated on Jun 5, 2025
Latest Train Crossing a Platform MCQ Objective Questions
ट्रेन द्वारा प्लेटफार्म को पर करना Question 1:
ट्रेन P, जो 'd' मीटर लंबी है, 300 मीटर लंबे प्लेटफॉर्म को पार करने में उतना ही समय लेती है जितना समय ट्रेन Q, जो (d + 200) मीटर लंबी है, 500 मीटर लंबे प्लेटफॉर्म को पार करने में लेती है। यदि उनकी गति का अनुपात (ट्रेन P से ट्रेन Q) 5 : 9 है, तो d का मान क्या है?
Answer (Detailed Solution Below)
Train Crossing a Platform Question 1 Detailed Solution
गणना
मान लीजिए कि ट्रेन P और Q की गति क्रमशः 5x मीटर/सेकंड और 9x मीटर/सेकंड है।
प्रश्नानुसार,
[ (d+300) / 5x] = [(d+700) / 9x]
इसलिए, 9d + 2700 = 5d + 3500
इसलिए, 4d = 800
इसलिए, d = 200
ट्रेन द्वारा प्लेटफार्म को पर करना Question 2:
80 मीटर लंबी ट्रेन A एक खंभे को 16 सेकंड में पार करती है। यदि यह ज्ञात है कि ट्रेन B और ट्रेन A की लंबाई का अनुपात 3:1 है, तो ट्रेन B को एक ऐसे प्लेटफॉर्म को पार करने में कितना समय लगेगा जो ट्रेन A की लंबाई का आधा है, यदि ट्रेन B की गति ट्रेन A की गति के समान है?
Answer (Detailed Solution Below)
Train Crossing a Platform Question 2 Detailed Solution
गणना:
ट्रेन A की गति = दूरी / समय = 80 मीटर / 16 सेकंड = 5 मीटर/सेकंड।
चूँकि ट्रेन B की गति ट्रेन A के समान है, इसलिए ट्रेन B की गति = 5 मीटर/सेकंड।
ट्रेन B की लंबाई = 3 × ट्रेन A की लंबाई
⇒ 3 × 80 = 240 मीटर।
प्लेटफॉर्म की लंबाई = (1/2) × ट्रेन A की लंबाई
⇒ (1/2) × 80 = 40 मीटर।
प्लेटफॉर्म को पार करने के लिए, ट्रेन B को अपनी लंबाई और प्लेटफॉर्म की लंबाई, अर्थात 240 मीटर + 40 मीटर = 280 मीटर को तय करना होगा।
प्लेटफॉर्म को पार करने में ट्रेन B द्वारा लिया गया समय = दूरी / गति
⇒ 280 मीटर / 5 मीटर/सेकंड = 56 सेकंड।
∴ ट्रेन B को प्लेटफॉर्म को पार करने में 56 सेकंड लगेंगे।
ट्रेन द्वारा प्लेटफार्म को पर करना Question 3:
दो समान लंबाई की ट्रेनें समानांतर पटरियों पर एक ही दिशा में क्रमशः 90 किमी/घंटा और 51 किमी/घंटा की गति से चल रही हैं। तेज गति वाली ट्रेन धीमी गति वाली ट्रेन को 36 सेकंड में पार करती है। प्रत्येक ट्रेन की लंबाई है:
Answer (Detailed Solution Below)
Train Crossing a Platform Question 3 Detailed Solution
दिया गया है:
तेज ट्रेन की गति = 90 किमी/घंटा
धीमी ट्रेन की गति = 51 किमी/घंटा
पार करने का समय = 36 सेकंड
ट्रेनें समान लंबाई की हैं और एक ही दिशा में चल रही हैं
प्रयुक्त सूत्र:
सापेक्ष गति = (गति₁ - गति₂)
दूरी = सापेक्ष गति × समय
प्रत्येक ट्रेन की लंबाई = (दूरी ÷ 2)
गणना:
⇒ सापेक्ष गति = 90 - 51 = 39 किमी/घंटा
⇒ 39 किमी/घंटा = 39 × (1000 ÷ 3600) = 10.83 मीटर/सेकंड
⇒ दूरी = 10.83 × 36 = 389.88 मीटर
⇒ प्रत्येक ट्रेन की लंबाई = 389.88 ÷ 2 ≈ 194.94 मीटर
∴ प्रत्येक ट्रेन की लंबाई लगभग 195 मीटर है।
ट्रेन द्वारा प्लेटफार्म को पर करना Question 4:
350 मीटर लंबी एक ट्रेन 1250 मीटर लंबी सुरंग को 80 सेकंड में पार करती है। ट्रेन की गति क्या है?
Answer (Detailed Solution Below)
Train Crossing a Platform Question 4 Detailed Solution
दिया गया है:
ट्रेन की लंबाई = 350 मीटर।
सुरंग की लंबाई = 1250 मीटर।
सुरंग को पार करने में लगा समय = 80 सेकंड।
प्रयुक्त सूत्र:
गति = कुल दूरी / समय
गणना:
कुल दूरी = ट्रेन की लंबाई + सुरंग की लंबाई
कुल दूरी = 350 + 1250
कुल दूरी = 1600 मीटर
समय = 80 सेकंड
गति = कुल दूरी / समय
गति = 1600 / 80
गति = 20 मीटर/सेकंड
मीटर/सेकंड को किमी/घंटा में बदलें:
किमी/घंटा में गति = मीटर/सेकंड में गति × 18/5
किमी/घंटा में गति = 20 × (18/5)
किमी/घंटा में गति = 72 किमी/घंटा
ट्रेन की गति 72 किमी/घंटा है।
ट्रेन द्वारा प्लेटफार्म को पर करना Question 5:
दो रेलगाड़ियाँ विपरीत दिशाओं में 50 किमी/घंटा और 110 किमी/घंटा की गति से चल रही हैं। एक रेलगाड़ी की लंबाई 500 मीटर है। उनके द्वारा एक-दूसरे को पार करने में लगा समय 12 सेकंड है। दूसरी रेलगाड़ी की लंबाई (मीटर में), 2 दशमलव स्थानों तक सही, है:
Answer (Detailed Solution Below)
Train Crossing a Platform Question 5 Detailed Solution
दिया गया है:
पहली रेलगाड़ी की गति (S1) = 50 किमी/घंटा
दूसरी रेलगाड़ी की गति (S2) = 110 किमी/घंटा
पहली रेलगाड़ी की लंबाई (L1) = 500 मीटर
पार करने में लगा समय (t) = 12 सेकंड
प्रयुक्त सूत्र:
सापेक्ष गति (विपरीत दिशा) = S1 + S2
दूरी = गति × समय
1 किमी/घंटा = 5/18 मीटर/सेकंड
जब दो रेलगाड़ियाँ एक-दूसरे को पार करती हैं, तो तय की गई कुल दूरी, उनकी लंबाइयों का योग होती है।
गणना:
सापेक्ष गति = 50 किमी/घंटा + 110 किमी/घंटा = 160 किमी/घंटा
सापेक्ष गति को मीटर/सेकंड में बदलें:
⇒ 160 किमी/घंटा = 160 × \(\frac{5}{18}\) मीटर/सेकंड
⇒ सापेक्ष गति = \(\frac{800}{18}\) मीटर/सेकंड = \(\frac{400}{9}\) मीटर/सेकंड
मान लीजिए दूसरी रेलगाड़ी की लंबाई L2 है।
तय की गई कुल दूरी = L1 + L2 = 500 + L2 मीटर
दूरी = गति × समय का उपयोग करके:
⇒ 500 + L2 = \(\frac{400}{9}\) × 12
⇒ 500 + L2 = \(\frac{400 \times 4}{3}\)
⇒ 500 + L2 = \(\frac{1600}{3}\)
⇒ 500 + L2 = 533.33
⇒ L2 = 533.33 - 500
⇒ L2 = 33.33
∴ दूसरी रेलगाड़ी की लंबाई 33.33 मीटर है।
Top Train Crossing a Platform MCQ Objective Questions
60 किमी प्रति घंटे की गति से चलते हुए, एक ट्रेन दो मिनट में 1.5 किमी लंबी सुरंग से गुजरती है, ट्रेन की लंबाई कितनी है?
Answer (Detailed Solution Below)
Train Crossing a Platform Question 6 Detailed Solution
Download Solution PDFदिया गया है:
ट्रेन की गति 60 किमी प्रति घंटा है।
ट्रेन दो मिनट में 1.5 किमी लंबी सुरंग से गुजरती है।
प्रयुक्त सूत्र:
दूरी = गति × समय
गणना:
मान लीजिए कि ट्रेन की लंबाई L है।
प्रश्न के अनुसार,
कुल दूरी = 1500 m + L
गति = 60(5/18)
⇒ 50/3 मीटर/सेकंड
समय = 2 × 60 = 120 सेकंड
⇒ 1500 + L = (50/3) × 120
⇒ L = 2000 - 1500
⇒ L = 500 मीटर
∴ ट्रेन की लंबाई 500 मीटर है।
एक ट्रेन 110 मी लंबे एक प्लेटफार्म को 13.5 सेकंड में और 205 मीटर लंबे प्लेटफार्म को 18.25 सेकंड में पार करती है। ट्रेन की गति कितनी है?
Answer (Detailed Solution Below)
Train Crossing a Platform Question 7 Detailed Solution
Download Solution PDFमाना ट्रेन की लंबाई x मी है।
⇒ ट्रेन की गति = (प्लेटफार्म की लंबाई + ट्रेन की लंबाई)/समय
प्रश्नानुसार,
⇒ (110 + x)/ 13.5 = (205 + x)/18.25
⇒ (110 + x)/2.7 = (205 + x)/3.65
⇒ 401.5 + 3.65x = 553.5 + 2.7x
⇒ 0.95x = 152
⇒ x = 160
एक 1200 मीटर लंबी ट्रेन किसी पेड़ को 120 सेकंड में पार करती है, किसी 700 मीटर लंबे प्लेटफार्म को पार करने में कितना समय लगेगा?
Answer (Detailed Solution Below)
Train Crossing a Platform Question 8 Detailed Solution
Download Solution PDFदिया गया है:
एक ट्रेन की लंबाई 1200 मीटर है।
एक पेड़ को पार करने में ट्रेन को 120 सेकंड लगे
एक प्लेटफॉर्म की लंबाई 700 मीटर है।
प्रयुक्त सूत्र:
गति = दूरी/समय
गणना:
गति = 1200/120 = 10 मीटर/सेकंड
कुल दूरी = 1200 + 700 = 1900 मीटर
समय = दूरी/गति = 1900/10 = 190 सेकंड
∴ एक प्लेटफॉर्म को पार करने के लिए अभीष्ट समय 190 सेकंड है।
एक ट्रेन 48 सेकंड में एक प्लेटफ़ॉर्म को पार करती है और प्लेटफ़ॉर्म पर खड़े यात्री को 30 सेकंड में पार करती है। यदि ट्रेन की चाल 72 किमी/घंटा है तो प्लेटफ़ॉर्म की लंबाई क्या है?
Answer (Detailed Solution Below)
Train Crossing a Platform Question 9 Detailed Solution
Download Solution PDFदिया गया है:
ट्रेन की चाल = 72 किमी/घंटा
ट्रेन 48 सेकंड में एक प्लेटफ़ॉर्म को पार करती है और प्लेटफ़ॉर्म पर खड़े यात्री को 30 सेकंड में पार करती है
प्रयुक्त अवधारणा:
चाल = दूरी/समय
व्यक्ति को पार करते समय ट्रेन वास्तव में अपनी खुद की लंबाई को पार करती है।
गणना:
ट्रेन की चाल 72 किमी/घंटा है = 72 × (5/18) = 20 मीटर/सेकंड
ट्रेन की लंबाई = चाल × समय
⇒ 20 × 30 = 600 मीटर
अब तदनुसार
\(20 = \;\frac{{x + 600}}{{48}}\)
⇒ \(20 × 48 = x + 600\)
⇒ x = 960 - 600
⇒ x = 360
∴ प्लेटफ़ॉर्म की लंबाई 360 मीटर हैI
एक पोल को पार करने में ट्रेन के अंतिम छोर को 53 सेकंड समय लगता है। यदि ट्रेन की लंबाई 110 मीटर है और ट्रेन की गति 36 किमी/घंटा है, तो ट्रेन के सामने के छोर से पोल की प्रारंभिक दूरी ज्ञात कीजिए।
Answer (Detailed Solution Below)
Train Crossing a Platform Question 10 Detailed Solution
Download Solution PDF⇒ गति = दूरी/समय
⇒ ट्रेन की गति = 36 × (5/18) = 10 मीटर/सेकंड
⇒ 53 सेकंड में तय की गई दूरी = 10 × 53 = 530 मीटर
⇒ ट्रेन की लंबाई = 110 मीटर
∴ ट्रेन के अगले सिरे से पोल की प्रारंभिक दूरी = 530 – 110 = 420 मीटर250 मीटर लंबी एक ट्रेन 750 मीटर लंबे एक पुल को 20 सेकंड में पार करती है और एक प्लेटफॉर्म को 15 सेकंड में पार करती है। प्लेटफॉर्म की लंबाई ज्ञात कीजिए।
Answer (Detailed Solution Below)
Train Crossing a Platform Question 11 Detailed Solution
Download Solution PDFदिया गया है:
250 मीटर लंबी एक ट्रेन 750 मीटर लंबे एक पुल को 20 सेकंड में पार करती है
और एक प्लेटफॉर्म को 15 सेकंड में पार करती है।
प्रयुक्त सूत्र:
दूरी = चाल × समय
गणना:
माना कि ट्रेन की चाल S है
और माना कि प्लेटफॉर्म की लंबाई x है
प्रश्नानुसार,
250 + 750 = S × 20
⇒ S = 1000/20
⇒ 50 मीटर/सेकंड
अब, पुन: प्रश्नानुसार
ट्रेन प्लेटफॉर्म को 15 सेकंड में पार करती है
250 + x = 50 × 15
⇒ x = 750 - 250
⇒ x = 500 मीटर
∴ प्लेटफॉर्म की लंबाई 500 मीटर है।
एक ट्रेन एक खम्भे को 5 सेकंड में पार करती है और सुरंग को 20 सेकंड में पार करती है। यदि ट्रेन की चाल 90 मी/से. है, तो सुरंग की लम्बाई ज्ञात कीजिए।
Answer (Detailed Solution Below)
Train Crossing a Platform Question 12 Detailed Solution
Download Solution PDFदिया गया है:
खम्भे को पार करने में लगा समय = 5 सेकंड
सुरंग को पार करने में लगा समय = 20 सेकंड
प्रयुक्त सूत्र:
चाल = दूरी/समय
गणना:
माना सुरंग की लंबाई x मीटर और ट्रेन की लंबाई y मीटर है।
समय = दूरी/चाल
⇒ 5 = (y/90)
⇒ y = 450 मीटर
सुरंग पार करने का समय = दूरी/चाल
⇒ 20 = (y + x)/90
⇒ 20 × 90 = (450 + x)
⇒ x = 1800 - 450 = 1350
∴ सुरंग की लंबाई 1350 मीटर है।
एक ट्रेन 12 सेकंड में एक खंभे को और 36 सेकंड में 170 मीटर की लंबाई के पुल को पार कर सकती है। तो ट्रेन की चाल है:
Answer (Detailed Solution Below)
Train Crossing a Platform Question 13 Detailed Solution
Download Solution PDFप्रयुक्त सूत्र:
चाल = दूरी / समय
(1 मीटर/सेकंड) × (18/5) = 1 किमी/घंटा
Shortcut Trickयदि ट्रेन 12 सेकंड में अपनी लंबाई और 170 मीटर पुल को (36 - 12 = 24) सेकंड में पार कर लेती है।
ट्रेन की चाल = [170/24] × [18/5] = 25.5 किमी/घंटा
Alternate Method
मान लीजिए ट्रेन की लंबाई x मी है।
जैसा कि हम जानते हैं,
चाल = दूरी/समय
चाल = x/12 ---(1)
चाल = (x + 170)/36 ---(2)
समीकरण (1) और समीकरण (2) से
x/12 = (x + 170)/36
⇒ 3x = x + 170
⇒ 2x = 170
⇒ x = 170/2
⇒ x = 85 मी
समीकरण (1) से
चाल = 85/12 × (18/5) किमी/घंटा
∴ चाल = 25.5 किमी/घंटाएक ट्रेन 375 मीटर लंबे प्लेटफार्म को 27 सेकंड में पार करती है। यदि यह 70 किमी/घंटा की गति से यात्रा कर रही थी तो ट्रेन की लंबाई कितनी थी?
Answer (Detailed Solution Below)
Train Crossing a Platform Question 14 Detailed Solution
Download Solution PDFमाना ट्रेन की लंबाई A मीटर है।
⇒ 70 किमी प्रति घंटा = 70 × 5/18 = 175/9 मीटर/सेकंड
एक ट्रेन 27 सेकंड में 375 मीटर लंबे प्लेटफार्म को पार करती है,
⇒ 175/9 = (375 + A) /27
⇒ 375 + A = 175 × 3
⇒ A = 150
∴ ट्रेन की लंबाई = 150 मीटरएक ट्रेन एक स्टेशन प्लेटफॉर्म को 36 सेकंड में पार करती है और प्लेटफॉर्म पर खड़े एक व्यक्ति को 20 सेकंड में पार करती है। यदि ट्रेन की चाल 54 किमी/घंटा है, तब प्लेटफॉर्म की लंबाई कितनी है?
Answer (Detailed Solution Below)
Train Crossing a Platform Question 15 Detailed Solution
Download Solution PDFदिया है:
एक ट्रेन एक स्टेशन के प्लेटफॉर्म को 36 सेकंड में पार करती है
और प्लेटफॉर्म पर खड़े एक व्यक्ति को 20 सेकंड में पार करती है।
ट्रेन की चाल 54 किमी/घंटा है।
प्रयुक्त सूत्र:
चाल = दूरी/समय
गणना:
माना ट्रेन की लंबाई x मी है और प्लेटफॉर्म की लंबाई y मी है, तब
प्रश्नानुसार,
54 × (5/18) = x/20
⇒ 15 × 20 = x
⇒ x = 300 मी
पुनः, प्रश्नानुसार
⇒ 54 × (5/18) = (300 + y) /36
⇒ 15 × 36 = 300 + x
⇒ y = 540 – 300
⇒ y = 240
∴ प्लेटफॉर्म की लंबाई 240 है।
Shortcut Trick जैसा कि दिया गया ट्रेन अपनी लंबाई को 20 सेकंड में पार कर लेती है।
इसलिए, प्लेटफ़ॉर्म को पार करने के लिए ट्रेन द्वारा लिया गया समय = 36 - 20 = 16 सेकंड
ट्रेन द्वारा 16 सेकंड में तय की गई दूरी = 54 × (5/18) × 16 = 240