सरलीकरण MCQ Quiz in मराठी - Objective Question with Answer for Simplification - मोफत PDF डाउनलोड करा

Last updated on Jun 3, 2025

पाईये सरलीकरण उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा सरलीकरण एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Simplification MCQ Objective Questions

सरलीकरण Question 1:

जर \(\rm x = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}}\) असेल, तर x2 + x-2 चे मूल्य काढा:

  1. 350
  2. 345
  3. 284
  4. 322

Answer (Detailed Solution Below)

Option 4 : 322

Simplification Question 1 Detailed Solution

दिलेले आहे:

\(\rm x = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}}\)

वापरलेली संकल्पना:

जर x + 1/x = a असेल, तर x2 + 1/x2 = a2 - 2

गणना:

\(\rm x = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}}\)

\(\rm \frac{1}{x} = \frac{{\sqrt 5 + 2}}{{\sqrt 5 - 2}}\)

⇒ x + 1/x = \(\frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}} + \frac{{\sqrt 5 + 2}}{{\sqrt 5 - 2}}\)

⇒ x + 1/x = \(\frac{(\sqrt 5 - 2)^2 + (\sqrt 5 + 2)^2}{(\sqrt 5 +2)(\sqrt 5 - 2)}\)

⇒ x + 1/x = 18

x2 + 1/x2 = a2 - 2

⇒ x2 + 1/x2 = 182 - 2

⇒ 322

∴ पर्याय 4 योग्य आहे.

सरलीकरण Question 2:

सरलीकृत करा:

\(\sqrt{(159-\sqrt{(244-\sqrt{(375-\sqrt{196})})})}\)

  1. 14
  2. 16
  3. 13
  4. 12

Answer (Detailed Solution Below)

Option 4 : 12

Simplification Question 2 Detailed Solution

गणना:

\(√{(159-√{(244-√{(375-√{196})})})}\)

\(√{(159-√{(244-√{(375- 14)})})}\)

\(√{(159-√{(244-√{(361)})})}\)

\(√{(159-√{(244-19)})}\)

\(√{(159-√{(225)})}\)

\(√{(159-15)}\)

√144

12

∴ पर्याय 4 हे योग्य उत्तर आहे.

सरलीकरण Question 3:

सरळरूप द्या:

(24 × 36 × 24 × 36) ÷ (2\((\sqrt {1296 \div 2})\))2

  1. 521 
  2. 288
  3. 484 
  4. 676 

Answer (Detailed Solution Below)

Option 2 : 288

Simplification Question 3 Detailed Solution

गणना:

⇒ (24 × 36 × 24 × 36) ÷ (2(\(\sqrt {1296 \div 2)} {)^2}\)

⇒ (24 × 36 × 24 × 36) ÷ (2 ×\(\sqrt {648}\) )2
 
⇒ (24 × 36 × 24 × 36) ÷ (4 × 648)
 
⇒ 288
 
∴ योग्य उत्तर पर्याय 2 आहे).
 

सरलीकरण Question 4:

\(\left( {\frac{{67}}{{63}}} \right)^2 \times \left( {\frac{{67}}{{63}}} \right)^{-1} \times \left( {\frac{{67}}{{63}}} \right)^{-2} \times \left( {\frac{{63}}{{67}}} \right) \) = ?

  1. \(\frac{3969}{4489}\)
  2. \(\frac{3829}{4562}\)
  3. \(\frac{3251}{4295}\)
  4. \(\frac{3921}{4629}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{3969}{4489}\)

Simplification Question 4 Detailed Solution

वापरलेली संकल्पना:

a m xa n = a m + n

आणि a m = (1/a) -m

गणना:

\(\left( {\frac{{67}}{{63}}} \right)^2 \times \left( {\frac{{67}}{{63}}} \right)^{-1 } \times \left( {\frac{{67}}{{63}}} \right)^{-2} \times \left( {\frac{{63}}{{67}}} \right) \)

\( ⇒ \left( {\frac{{67}}{{63}}} \right)^2 \times \left( {\frac{{67}}{{63}}} \right)^{- 1} \times \left( {\frac{{67}}{{63}}} \right)^{-2} \times \left( {\frac{{67}}{{63}}} \right )^{-1} \)

\( ⇒ \left( {\frac{{67}}{{63}}} \right)^{2-1-2-1} = \left( {\frac{{67}}{{63}} } \right)^{-2}= \left( {\frac{{63}}{{67}}} \right)^{2}\)

\( ⇒ \left(\frac{63^2}{67^2} \right) = \frac{3969}{4489}\)

सरलीकरण Question 5:

x चे अंदाजे मूल्य शोधा (पूर्णांकात).
\(12.21 + 0.69 - \sqrt{99.90} + (5.90 - 3.90) = x\)

  1. 7
  2. 6
  3. 4
  4. 5

Answer (Detailed Solution Below)

Option 4 : 5

Simplification Question 5 Detailed Solution

Top Simplification MCQ Objective Questions

खालीलपैकी कोणती संख्या सर्वात मोठी आहे?

\(0.7,\;0.\bar 7,\;0.0\bar 7,0.\overline {07}\)

  1. \(0.\overline {07} \)
  2. \(0.0\bar 7\)
  3. 0.7
  4. \(0.\bar 7\)

Answer (Detailed Solution Below)

Option 4 : \(0.\bar 7\)

Simplification Question 6 Detailed Solution

Download Solution PDF

0.7

\(0.\bar 7 = 0.77777 \ldots\)

\(0.0\bar 7 = 0.077777 \ldots\)

\(0.\overline {07} = 0.070707 \ldots\)

आता, 0.7777…  किंवा \(0.\bar 7\) ही संख्या सर्वात मोठी आहे.

\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\) चे मूल्य किती आहे?

  1. 36
  2. 37
  3. 39
  4. 38

Answer (Detailed Solution Below)

Option 2 : 37

Simplification Question 7 Detailed Solution

Download Solution PDF

उकल:

\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)

= 25/2 + 37/3 + 73/6

= (75 + 74 + 73)/6

= 222/6

= 37


Shortcut Trick

\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)

= 12 + 12 + 12 + (1/2 + 1/3 + 1/6)

= 36 + 1 = 37

(8 + 2√15)चे वर्गमूळ काय ?

  1. √5 + √3
  2. 2√2 + 2√6
  3. 2√5 + 2√3
  4. √2 + √6

Answer (Detailed Solution Below)

Option 1 : √5 + √3

Simplification Question 8 Detailed Solution

Download Solution PDF

वापरलेले सुत्र:

(a + b)2 = a2 + b2 + 2ab

गणना:

दिलेली पदावली आहे:

\(\sqrt {8\; + \;2\sqrt {15} \;} \)

⇒ \(\sqrt {5\; + \;3\; + \;2\times \sqrt 5 \times \sqrt 3 \;} \)

⇒  \(\sqrt {{{(\sqrt 5 )}^2}\; + \;{{\left( {\sqrt 3 } \right)}^2}\; + \;2 \times \sqrt 5 \times \sqrt 3 \;} \)

⇒  \(\sqrt {{{\left( {\;\sqrt 5 \; + \;\sqrt 3 \;} \right)}^2}\;} \)

⇒  \(\sqrt 5 + \sqrt 3 \)

सरलीकरणात  \(\sqrt {{{\left( {0.65} \right)}^2} - {{\left( {0.16} \right)}^2}} \) पर्यंत कमी होते

  1. 0.63
  2. 0.65
  3. 0.54
  4. यापैकी काहीही नाही

Answer (Detailed Solution Below)

Option 1 : 0.63

Simplification Question 9 Detailed Solution

Download Solution PDF

\(\sqrt {{{\left( {0.65} \right)}^2} - {{\left( {0.16} \right)}^2}} \)

त्याचप्रमाणे,

a2 - b2 = (a - b) ( a + b)

\(\begin{array}{l} \Rightarrow \sqrt {\left( {0.65 + 0.16} \right)\left( {0.65 - 0.16} \right)} \\ \Rightarrow \sqrt {\left( {0.81} \right)\left( {0.49} \right)} \\ \Rightarrow \sqrt {\left( {0.9} \right)\left( {0.9} \right) \times \left( {0.7} \right)\left( {0.7} \right)} \end{array}\)

⇒ 0.9 × 0.7 = 0.63

∴ उत्तर 0.63 आहे

(10 + √25) (12 - √49) चे वर्गमूळ आहे:

  1. 4√3 
  2. 3√3
  3. 5√3
  4. 2√3

Answer (Detailed Solution Below)

Option 3 : 5√3

Simplification Question 10 Detailed Solution

Download Solution PDF

संकल्पना:

आपण गुणखंडन पद्धतीने x शोधू शकतो.

हिशोब:

√[(10 + √25) (12 - √49)]

⇒ √(10 + 5)(12 – 7)

⇒ √(15 × 5)

⇒ √(3 × 5 × 5)

⇒ 5√3

x चे मूल्य काढा.

23 × 34 × 1080 ÷ 15 = 6x

  1. 4
  2. 6
  3. 8
  4. 2

Answer (Detailed Solution Below)

Option 2 : 6

Simplification Question 11 Detailed Solution

Download Solution PDF

दिलेले आहे,

23 × 34 × 1080 ÷ 15 = 6x

⇒ 23 × 34 × 72 = 6x

⇒ 23 × 34 × (2 × 62) = 6x

⇒ 24 × 34 × 62 = 6x

⇒ (2 × 3)4 × 62 = 6x           [∵ xm × ym = (xy)m]

⇒ 64 × 62 = 6x

⇒ 6(4 + 2) = 6x

⇒ x = 6

जर √3n = 729, तर n चे मूल्य शोधा.

  1. 6
  2. 8
  3. 12
  4. 9

Answer (Detailed Solution Below)

Option 3 : 12

Simplification Question 12 Detailed Solution

Download Solution PDF

दिलेले आहे:

√3n = 729

वापरलेले सूत्र:

(xa)b = xab

जर xa = xb तर a = b 

गणना:

√3n = 729

⇒ √3n = (32)3

⇒ (3n)1/2 = (32)3

⇒ (3n)1/2 = 36

⇒ n/2 = 6 

∴  n = 12 

सोडवा:

(81.84 + 118.16) ÷ 53 = 1.2 × 2 + ?

  1. 0.8
  2. -0.8
  3. 0.6
  4. -0.6

Answer (Detailed Solution Below)

Option 2 : -0.8

Simplification Question 13 Detailed Solution

Download Solution PDF

दिलेले समीकरण,

(81.84 + 118.16) ÷ 53 = 1.2 × 2 + ?

⇒ 200 ÷ 53 = 1.2 × 2 + ?

⇒ 200 ÷ 125 = 1.2 × 2 +?

⇒ 1.6 = 2.4 + ?

⇒ ? = -0.8

सोडवा:

\(\sqrt {11 - 2\sqrt {30} }\)

  1. \(\sqrt 6 + \sqrt 5 \)
  2. 6
  3. \(\sqrt 6 - \sqrt 5\)
  4. \(6 - \sqrt 5\)

Answer (Detailed Solution Below)

Option 3 : \(\sqrt 6 - \sqrt 5\)

Simplification Question 14 Detailed Solution

Download Solution PDF
\(\begin{array}{l} \sqrt {11 - 2\sqrt {30} } \\ = \sqrt {\left( {11} \right) - 2\sqrt 6 \times \sqrt 5 } \\ = \sqrt {\left( {6 + 5} \right) - 2\sqrt 6 \times \sqrt 5 } \\ = \sqrt {{{\left( {\sqrt 6 } \right)}^2} + {{\left( {\sqrt 5 } \right)}^2} - 2\sqrt 6 \times \sqrt 5 } \\ = \sqrt {{{\left( {\sqrt 6 - \sqrt 5 } \right)}^2}} \\ = \sqrt 6 - \sqrt 5 \end{array}\)

जर (3 + 2√5)2 = 29 + K√5, तर K चे मूल्य किती?

  1. 12
  2. 6
  3. 29
  4. 39

Answer (Detailed Solution Below)

Option 1 : 12

Simplification Question 15 Detailed Solution

Download Solution PDF

पद्धत I: (3 + 2√5)2

= (32 + (2√5)2 + 2 × 3 × 2√5)

= 9 + 20 + 12√5 = 29 + 12√5

तुलना केल्यास, 29 + 12√5 = 29 + K√5

आपल्याकडे,

K = 12

Additional Information

29 + 12√5 = 29 + K√5

⇒ K√5 = 29 - 29 + 12√5

⇒ K√5 = 12√5

∴ K = 12

Get Free Access Now
Hot Links: teen patti wink teen patti master list teen patti neta teen patti octro 3 patti rummy