সরলীকরণ MCQ Quiz in বাংলা - Objective Question with Answer for Simplification - বিনামূল্যে ডাউনলোড করুন [PDF]
Last updated on Jun 3, 2025
Latest Simplification MCQ Objective Questions
সরলীকরণ Question 1:
যদি \(\rm x = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}}\) হয়, তাহলে x2 + x-2 এর মান কত?
Answer (Detailed Solution Below)
Simplification Question 1 Detailed Solution
প্রদত্ত:
\(\rm x = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}}\)
অনুসৃত ধারণা:
যদি x + 1/x = a হয়, তাহলে x2 + 1/x2 = a2 - 2
গণনা:
⇒ \(\rm x = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}}\)
⇒ \(\rm \frac{1}{x} = \frac{{\sqrt 5 + 2}}{{\sqrt 5 - 2}}\)
⇒ x + 1/x = \(\frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}} + \frac{{\sqrt 5 + 2}}{{\sqrt 5 - 2}}\)
⇒ x + 1/x = \(\frac{(\sqrt 5 - 2)^2 + (\sqrt 5 + 2)^2}{(\sqrt 5 +2)(\sqrt 5 - 2)}\)
⇒ x + 1/x = 18
⇒ x2 + 1/x2 = a2 - 2
⇒ x2 + 1/x2 = 182 - 2
⇒ 322
∴ 4 নম্বর বিকল্পটি সঠিক উত্তর।
সরলীকরণ Question 2:
সরল করুন :
\(\sqrt{(159-\sqrt{(244-\sqrt{(375-\sqrt{196})})})}\)
Answer (Detailed Solution Below)
Simplification Question 2 Detailed Solution
গণনা:
\(√{(159-√{(244-√{(375-√{196})})})}\)
\(√{(159-√{(244-√{(375- 14)})})}\)
\(√{(159-√{(244-√{(361)})})}\)
\(√{(159-√{(244-19)})}\)
\(√{(159-√{(225)})}\)
\(√{(159-15)}\)
√144
12
∴ বিকল্প 4 সঠিক উত্তর।
সরলীকরণ Question 3:
সরল করুন:
(24 x 36 x 24 x 36) ÷ (2\((\sqrt {1296 \div 2})\))2
Answer (Detailed Solution Below)
Simplification Question 3 Detailed Solution
গণনা:
⇒ (24 x 36 x 24 x 36) ÷ (2(\(\sqrt {1296 \div 2)} {)^2}\)
সরলীকরণ Question 4:
\(\left( {\frac{{67}}{{63}}} \right)^2 \times \left( {\frac{{67}}{{63}}} \right)^{-1} \times \left( {\frac{{67}}{{63}}} \right)^{-2} \times \left( {\frac{{63}}{{67}}} \right) \)এর মান কত?
Answer (Detailed Solution Below)
Simplification Question 4 Detailed Solution
ব্যবহৃত ধারণা:
a m xa n = a m + n
এবং a m = (1/a) -m
গণনা:
\(\left( {\frac{{67}}{{63}}} \right)^2 \times \left( {\frac{{67}}{{63}}} \right)^{-1} \times \left( {\frac{{67}}{{63}}} \right)^{-2} \times \left( {\frac{{63}}{{67}}} \right) \)
\( ⇒ \left( {\frac{{67}}{{63}}} \right)^2 \times \left( {\frac{{67}}{{63}}} \right)^{- 1} \times \left( {\frac{{67}}{{63}}} \right)^{-2} \times \left( {\frac{{67}}{{63}}} \right )^{-1} \)
\( ⇒ \left( {\frac{{67}}{{63}}} \right)^{2-1-2-1} = \left( {\frac{{67}}{{63}} } \right)^{-2}= \left( {\frac{{63}}{{67}}} \right)^{2}\)
\( ⇒ \left(\frac{63^2}{67^2} \right) = \frac{3969}{4489}\)
সরলীকরণ Question 5:
যদি (6)x+5 ÷ (6)-2x+3 = (6)2x-5 × [(6)-2]x+4 হয়, তাহলে x এর মান কত হবে?
Answer (Detailed Solution Below)
Simplification Question 5 Detailed Solution
প্রদত্ত:
(6)x+5 ÷ (6)-2x+3 = (6)2x-5 × [(6)-2]x+4
অনুসৃত সূত্র:
am/an = am - n
am x an = am + n
(am)n = amn
গণনা:
⇒ (6)x+5 ÷ (6)-2x+3 = (6)2x-5 × [(6)-2]x+4
⇒ (6)x+5-(-2x+3) = (6)2x-5 × (6)-2(x+4)
⇒ (6)3x + 2 = (6)2x - 5 × 6(- 2x - 8)
⇒ (6)3x + 2 = (6)(2x - 5 + -2x - 8)
উভয় পক্ষের 6 এর ঘাত তুলনা করে পাই,
3x + 2 = 2x - 5 + -2x - 8
3x + 2 = -13
3x = -15
x = -15/3
x = - 5
∴ সঠিক উত্তর হল -5
Top Simplification MCQ Objective Questions
নিম্নলিখিত কোন সংখ্যাটি এদের মধ্যে বৃহত্তম?
\(0.7,\;0.\bar 7,\;0.0\bar 7,0.\overline {07}\)
Answer (Detailed Solution Below)
Simplification Question 6 Detailed Solution
Download Solution PDF0.7
\(0.\bar 7 = 0.77777 \ldots\)
\(0.0\bar 7 = 0.077777 \ldots\)
\(0.\overline {07} = 0.070707 \ldots\)
এখন, 0.7777… বা \(0.\bar 7\) প্রদত্ত সংখ্যা গুলির মধ্যে বৃহত্তম।.\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}?\) এর মান কত?
Answer (Detailed Solution Below)
Simplification Question 7 Detailed Solution
Download Solution PDFসমাধান:
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 25/2 + 37/3 + 73/6
= (75 + 74 + 73)/6
= 222/6
= 37
Shortcut Trick
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 12 + 12 + 12 + (1/2 + 1/3 + 1/6)
= 36 + 1 = 37
(8 + 2√15) এর বর্গমূল কত?
Answer (Detailed Solution Below)
Simplification Question 8 Detailed Solution
Download Solution PDFঅনুসৃত সূত্র :
(a + b) 2 = a 2 + b 2 + 2ab
গণনা:
প্রদত্ত রাশি:
\(\sqrt {8\; + \;2\sqrt {15} \;} \)
⇒ \(\sqrt {5\; + \;3\; + \;2\times \sqrt 5 \times \sqrt 3 \;} \)
⇒ \(\sqrt {{{(\sqrt 5 )}^2}\; + \;{{\left( {\sqrt 3 } \right)}^2}\; + \;2 \times \sqrt 5 \times \sqrt 3 \;} \)
⇒ \(\sqrt {{{\left( {\;\sqrt 5 \; + \;\sqrt 3 \;} \right)}^2}\;} \)
⇒ \(\sqrt 5 + \sqrt 3 \)
\(\sqrt {{{\left( {0.65} \right)}^2} - {{\left( {0.16} \right)}^2}} \)-এর সরলীকৃত রূপটি কেমন হবে?
Answer (Detailed Solution Below)
Simplification Question 9 Detailed Solution
Download Solution PDF\(\sqrt {{{\left( {0.65} \right)}^2} - {{\left( {0.16} \right)}^2}} \)
যেহেতু,
a 2 - b 2 = (a - b) (a + b)
\(\begin{array}{l} \Rightarrow \sqrt {\left( {0.65 + 0.16} \right)\left( {0.65 - 0.16} \right)} \\ \Rightarrow \sqrt {\left( {0.81} \right)\left( {0.49} \right)} \\ \Rightarrow \sqrt {\left( {0.9} \right)\left( {0.9} \right) \times \left( {0.7} \right)\left( {0.7} \right)} \end{array}\)
⇒ 0.9 × 0.7 = 0.63
∴ উত্তর হল 0.63((10 + √25)(12 – √49)) এর বর্গমূল কতো?
Answer (Detailed Solution Below)
Simplification Question 10 Detailed Solution
Download Solution PDFধারণা:
আমরা উৎপাদকে বিশ্লেষণ পদ্ধতি ব্যবহার করে √x খুঁজে পেতে পারি।
গণনা:
√[(10 + √25) (12 - √49)]
⇒ √[(10 + 5)(12 – 7)]
⇒ √(15 × 5)
⇒ √(3 × 5 × 5)
⇒ 5√3
Answer (Detailed Solution Below)
Simplification Question 11 Detailed Solution
Download Solution PDFপ্রদত্ত,
23 × 34 × 1080 ÷ 15 = 6x
⇒ 23 × 34 × 72 = 6x
⇒ 23 × 34 × (2 × 62) = 6x
⇒ 24 × 34 × 62 = 6x
⇒ (2 × 3)4 × 62 = 6x [∵ xm × ym = (xy)m]
⇒ 64 × 62 = 6x
⇒ 6(4 + 2) = 6x
⇒ x = 6
√3n = 729 হলে, n-এর মান কত?
Answer (Detailed Solution Below)
Simplification Question 12 Detailed Solution
Download Solution PDFপ্রদত্ত:
√3n = 729
অনুসৃত সূত্র:
(xa)b = xab
xa = xb হলে a = b
গণনা:
√3n = 729
⇒ √3n = (32)3
⇒ (3n)1/2 = (32)3
⇒ (3n)1/2 = 36
⇒ n/2 = 6
∴ n = 12
Answer (Detailed Solution Below)
Simplification Question 13 Detailed Solution
Download Solution PDFপ্রদত্ত রাশি,
(81.84 + 118.16) ÷ 53 = 1.2 × 2 + ?
⇒ 200 ÷ 53 = 1.2 × 2 + ?
⇒ 200 ÷ 125 = 1.2 × 2 +?
⇒ 1.6 = 2.4 + ?
⇒ ? = -0.8
Answer (Detailed Solution Below)
Simplification Question 14 Detailed Solution
Download Solution PDFযদি (3 + 2√5)2 = 29 + K√5, তাহলে K-এর মান কত?
Answer (Detailed Solution Below)
Simplification Question 15 Detailed Solution
Download Solution PDFপদ্ধতি I: (3 + 2√5)2
= (32 + (2√5)2 + 2 × 3 × 2√5)
= 9 + 20 + 12√5 = 29 + 12√5
তুলনা করলে, 29 + 12√5 = 29 + K√5
আমরা পাই,
K = 12
Alternate Method
29 + 12√5 = 29 + K√5
⇒ K√5 = 29 - 29 + 12√5
⇒ K√5 = 12√5
∴ K = 12