बीजगणित MCQ Quiz in हिन्दी - Objective Question with Answer for Algebra - मुफ्त [PDF] डाउनलोड करें

Last updated on Jun 6, 2025

पाईये बीजगणित उत्तर और विस्तृत समाधान के साथ MCQ प्रश्न। इन्हें मुफ्त में डाउनलोड करें बीजगणित MCQ क्विज़ Pdf और अपनी आगामी परीक्षाओं जैसे बैंकिंग, SSC, रेलवे, UPSC, State PSC की तैयारी करें।

Latest Algebra MCQ Objective Questions

बीजगणित Question 1:

दो विद्यार्थी एक परीक्षा में बैठे है। उनमें से एक ने दूसरे से 9 अंक अधिक प्राप्त किए और उसके अंक उनके अंकों के योग का 56% है। उनके द्वारा प्राप्त अंक कितना हैं?

  1. 35, 44
  2. 35, 42
  3. 33, 44
  4. 33, 42
  5. उपर्युक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 4 : 33, 42

Algebra Question 1 Detailed Solution

दिया गया है:

दो विद्यार्थी एक परीक्षा में बैठे।

उनमें से एक ने दूसरे से 9 अंक अधिक प्राप्त किये।

उसके अंक उनके अंकों के योग का 56% है।

प्रयुक्त अवधारणा:

दी गई स्थितियों को दर्शाने के लिए बीजीय समीकरणों का उपयोग करते हैं और अज्ञात को हल करते हैं

गणना:

माना कि कम अंक पाने वाले विद्यार्थी के अंक x हैं।

इसलिए, अधिक अंक पाने वाले विद्यार्थी के अंक x + 9 हैं।

उनके अंकों का योग = x + (x + 9) = 2x + 9

प्रश्नानुसार, अधिक अंक पाने वाले विद्यार्थी के अंक, उनके अंकों के योग का 56% हैं।

⇒ x + 9 = 56/100 × (2x + 9)

⇒ x + 9 = 0.56(2x + 9)

⇒ x + 9 = 1.12x + 5.04

⇒ x + 9 - 1.12x = 5.04

⇒ -0.12x + 9 = 5.04

⇒ -0.12x = 5.04 - 9

⇒ -0.12x = -3.96

⇒ x = -3.96 / -0.12

⇒ x = 33

कम अंक पाने वाले विद्यार्थी के अंक = 33

अधिक अंक पाने वाले विद्यार्थी के अंक = 33 + 9 = 42

∴ विद्यार्थियों द्वारा प्राप्त अंक 33 और 42 हैं।

बीजगणित Question 2:

व्यंजक (234)100 + (234)101 की परिणामी संख्या के इकाई स्थान पर कौन-सा अंक है?

  1. 6
  2. 4
  3. 2
  4. 0
  5. उपर्युक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 4 : 0

Algebra Question 2 Detailed Solution

दिया गया है

दिया गया व्यंजक:  (234)100 + (234)101 

उपयोग की गई संकल्पना

इकाई अंक 4 वाली किसी प्राकृत संख्या के लिए,

यदि घात सम संख्या है अर्थात 2, 4, 6,...

तब इकाई का अंक 6 होगा

और यदि घात विषम संख्या है अर्थात 1, 3, 5,...

तब इकाई का अंक 4 होगा

गणना

दिया गया व्यंजक (234)100 + (234)101 है  

⇒ (234)100[1 + 234]

⇒ (234)100 × 235

यहाँ घात 100 (सम) है और संख्या 234 है (इकाई का अंक 4 है)

⇒ इकाई का अंक 6 होगा

अब, 6 × 5 = 30 (इकाई का अंक 0 है)

∴ सही उत्तर 0 है।

बीजगणित Question 3:

यदि \(\rm x+\frac{1}{x}=\sqrt7\) है, तो \(\rm x^3+\frac{1}{x^3}\) का मान क्या है?

  1. 4√7
  2. 3√7
  3. 5√7
  4. 2√7
  5. उपर्युक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 1 : 4√7

Algebra Question 3 Detailed Solution

दिया गया है:

यदि x + 1/x = √7, तो x3 + 1/x3 का मान ज्ञात कीजिए।

प्रयुक्त सूत्र:

यदि x + 1/x = a, तो x3 + 1/x3 = a3 - 3a है। 

गणना:

यहाँ, a = √7

⇒ x3 + 1/x3 = (√7)3 - 3(√7)

⇒ x3 + 1/x3 = (7√7) - 3√7

⇒ x3 + 1/x3 = 4√7

∴ सही उत्तर विकल्प (1) है।

बीजगणित Question 4:

निम्नलिखित व्यंजक को सरल कीजिए।

\(\rm 8\left(\frac{0.2\times 0.2\times 0.2+0.04\times 0.04\times 0.04}{0.4\times 0.4\times 0.4+0.08\times 0.08\times 0.08}\right)+9\)

  1. 8
  2. 17
  3. 10
  4. 1
  5. उपर्युक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 3 : 10

Algebra Question 4 Detailed Solution

दिया गया है:

\(\rm 8\left(\frac{0.2\times 0.2\times 0.2+0.04\times 0.04\times 0.04}{0.4\times 0.4\times 0.4+0.08\times 0.08\times 0.08}\right)+9\)

प्रयुक्त सूत्र:

\(\rm a^3 + b^3 = (a + b)(a^2 - ab + b^2)\)

गणना:

माना, a = 0.2 और b = 0.04

अंश = \(\rm (0.2)^3 + (0.04)^3 = a^3 + b^3\)

हर के पद: 0.4 = 2a, 0.08 = 2b

हर = \(\rm (0.4)^3 + (0.08)^3 = (2a)^3 + (2b)^3 = 8a^3 + 8b^3 = 8(a^3 + b^3)\)

भिन्न = \(\rm \frac{a^3 + b^3}{8(a^3 + b^3)} = \frac{1}{8}\)

व्यंजक = \(\rm 8 \times \frac{1}{8} + 9\)

व्यंजक = 1 + 9

व्यंजक = 10

इसलिए, व्यंजक का सरलीकृत मान 10 है।

बीजगणित Question 5:

एक कक्षा के छात्रों के बीच 1800 चॉकलेट वितरित की गयीं। प्रत्येक छात्र को कक्षा में छात्रों की संख्या से दोगुनी चॉकलेट मिलीं। कक्षा में छात्रों की संख्या की गणना कीजिये।

  1. 30
  2. 40
  3. 60
  4. 90
  5. उपर्युक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 1 : 30

Algebra Question 5 Detailed Solution

माना कक्षा में छात्रों की संख्या ‘x’ है।

प्रत्येक छात्र को प्राप्त चॉकलेट की संख्या = 2x

चॉकलेट की कुल संख्या = 2x × x

⇒ 2x2 = 1800

⇒ x2 = 900

⇒ x = √900 = 30

∴ कक्षा में 30 छात्र हैं।

Top Algebra MCQ Objective Questions

यदि x − \(\rm\frac{1}{x}\) = 3 है, तो x3 − \(\rm\frac{1}{x^3}\) का मान ज्ञात कीजिए। 

  1. 36
  2. 63
  3. 99
  4. इनमें से कोई नहीं

Answer (Detailed Solution Below)

Option 1 : 36

Algebra Question 6 Detailed Solution

Download Solution PDF

दिया गया है:

x - 1/x = 3

प्रयुक्त अवधारणा:

a3 - b3 = (a - b)3 + 3ab(a - b)

गणना:

x3 - 1/x3 = (x - 1/x)3 + 3 × x × 1/x × (x - 1/x)

⇒ (x - 1/x)3 + 3(x - 1/x)

⇒ (3)3 + 3 × (3)

⇒ 27 + 9 = 36

∴ x3 - 1/x3 का मान 36 है।

Alternate Methodयदि x - 1/x = a है, तब x3 - 1/x3 = a3 + 3a

यहाँ a = 3

x - 1/x3 = 33 + 3 × 3

= 27 + 9

= 36

यदि x = √10 + 3 है, तो \(x^3 - \frac{1}{x^3}\) का मान ज्ञात कीजिये।

  1. 334
  2. 216
  3. 234
  4. 254

Answer (Detailed Solution Below)

Option 3 : 234

Algebra Question 7 Detailed Solution

Download Solution PDF

दिया गया है:

x = √10 + 3

प्रयुक्त सूत्र: 

a2 - b2 = (a + b)(a - b)

a3 - b3 = (a - b)(a2 + ab + b2)

गणना:

\(\begin{array}{l} \frac{1}{x} = \frac{1}{{\sqrt{10}{\rm{\;}} + {\rm{\;}}3}}\\ = {\rm{\;}}\frac{{\sqrt{10} {\rm{\;}} - {\rm{\;}}3}}{{\left( {\sqrt{10} + {\rm{\;}}3} \right)\left( {\sqrt{10} {\rm{\;}} - {\rm{\;}}3} \right)}}\\ = {\rm{\;}}\frac{{\sqrt{10} {\rm{\;}} - {\rm{\;}}3 }}{{{{\left( {\sqrt{10} } \right)}^2} - {{\left( {3} \right)}^2}}} \end{array}\)

⇒ 1/x = √10 - 3

\( \Rightarrow x - \;\frac{1}{x} = \;\sqrt 10 + 3\; -\sqrt10 + 3 = 6\)     ----(1)

(1) के दोनों पक्षों का वर्ग करने पर,

\( \Rightarrow (x - \;\frac{1}{x})^2 = \;(6\;)^2\)

\(\Rightarrow {x^2} - 2x\frac{1}{x} + \;\frac{1}{{{x^2}}} = 36\)

\(\Rightarrow {x^2} - 2 + \;\frac{1}{{{x^2}}} = 36\)

\(\Rightarrow {x^2} + \;\frac{1}{{{x^2}}} = 38\)    -----(2)

\(∴ \;{x^3} - \;\frac{1}{{{x^3}}}\; = \left( {\;x - \;\frac{1}{x}\;} \right)\left( {\;{x^2} + x\frac{1}{x} + \;\frac{1}{{{x^2}}}\;} \right)\)

\(\Rightarrow \;{x^3} - \;\frac{1}{{{x^3}}}\; = \left( {\;x - \;\frac{1}{x}\;} \right)\left( {\;{x^2} + \;\frac{1}{{{x^2}}} + 1} \right)\)

\(\Rightarrow \;{x^3} - \;\frac{1}{{{x^3}}}\; = 6 \times (38 + 1)\)

\(x^3 - \frac{1}{x^3} = 234\)

∴ अभीष्ट मान 234 है

 Shortcut Trickदिया गया है:

x = √10 + 3
प्रयुक्त सूत्र:

⇒ \(x^3 - \frac{1}{x^3} = a^3 + 3a\)

गणना:

x = √10 + 3

⇒ 1/x = √10 - 3

⇒ \(x -\frac{1}{x} = 6\) 

⇒ \(x^3 - \frac{1}{x^3} = 6^3 + 3\times 6\)

⇒ \(x^3 - \frac{1}{x^3} = 234\)

∴ अभीष्ट मान 234 है

यदि p - 1/p = √7 है, तब p3 – 1/p3 का मान ज्ञात कीजिए।

  1. 12√7
  2. 4√5
  3. 8√7
  4. 10√7

Answer (Detailed Solution Below)

Option 4 : 10√7

Algebra Question 8 Detailed Solution

Download Solution PDF

दिया गया है:

p – 1/p = √7

सूत्र:

P3 – 1/p3 = (p – 1/p)3 + 3(p – 1/p)

गणना:

P3 – 1/p3 = (p – 1/p)3 + 3 (p – 1/p)

⇒ p3 – 1/p3 = (√7)3 + 3√7

⇒ p3 – 1/p3 = 7√7 + 3√7

⇒ p3 – 1/p3 = 10√7

Shortcut Trick

x - 1/x = a, तब x3 - 1/x3 = a3 + 3a

यहाँ, a = √7

अत:,

p3 – 1/p3 = (√7)3 + 3 × √7 = 7√7 + 3√7 = 10√7

यदि a + b + c = 14, ab + bc + ca = 47 और abc = 15 है, तब a3 + b3 +c3 का मान ज्ञात कीजिए।

  1. 815
  2. 825
  3. 835
  4. 845

Answer (Detailed Solution Below)

Option 1 : 815

Algebra Question 9 Detailed Solution

Download Solution PDF

दिया गया है:

a + b + c = 14, ab + bc + ca = 47 और abc = 15

प्रयुक्त अवधारणा:

a³ + b³ + c³ - 3abc = (a + b + c) × [(a + b + c)² - 3(ab + bc + ca)]

गणना:

a³ + b³ + c³ - 3abc = 14 × [(14)² - 3 × 47]

⇒ a³ + b³ + c³ – 3 × 15 = 14(196 – 141)

⇒ a³ + b³ + c³ = 14(55) + 45

⇒ 770 + 45

⇒ 815

∴ विकल्प 1 सही विकल्प है।

x2/3 + x1/3 = 2 को संतुष्ट करने वाले x के मानों का योग है:

  1. -3
  2. 7
  3. -7
  4. 3

Answer (Detailed Solution Below)

Option 3 : -7

Algebra Question 10 Detailed Solution

Download Solution PDF

प्रयुक्त सूत्र:

(a + b)3 = a3 + b3 + 3ab(a + b)

गणना:

⇒ x2/3 + x1/3 = 2

⇒ (x2/3 + x1/3)3 = 23

⇒ x2 + x + 3x(x2/3 + x1/3) = 8

⇒ x2 + 7x - 8 = 0

⇒ x2 + 8x - x - 8 = 0

⇒ x (x + 8) - 1 (x + 8) = 0

⇒ x = - 8 या x = 1

∴ x के मानों का योग = -8 + 1 = - 7

यदि a + b + c = 0 है, तो (a3 + b3 + c3)2 = ?

  1. 3a2b2c2
  2. 9a2b2c2
  3. 9abc
  4. 27abc

Answer (Detailed Solution Below)

Option 2 : 9a2b2c2

Algebra Question 11 Detailed Solution

Download Solution PDF

प्रयुक्त सूत्र:

a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

गणना:

a + b + c = 0

a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

⇒ a3 + b3 + c3 - 3abc = 0 × (a2 + b2 + c2 - ab - bc - ca) = 0

⇒ a3 + b3 + c3 - 3abc = 0

⇒ a3 + b3 + c3 = 3abc 

अब, (a3 + b3 + c3)2 = (3abc)2 = 9a2b2c2 

यदि 3x2 – ax + 6 = ax2 + 2x + 2 का केवल एक हल (पुनरावृत्त) है, तो a का धनात्मक अभिन्न हल क्या है?

  1. 3
  2. 2
  3. 4
  4. 5

Answer (Detailed Solution Below)

Option 2 : 2

Algebra Question 12 Detailed Solution

Download Solution PDF

दिया गया है:

3x2 – ax + 6 = ax2 + 2x + 2

⇒ 3x2 – ax2 – ax – 2x + 6 – 2 = 0

⇒ (3 – a)x2 – (a + 2)x + 4 = 0

प्रयुक्त अवधारणा:

यदि एक द्विघात समीकरण (ax+ bx + c = 0) के मूल बराबर हैं, तब विविक्तकर शून्य होना चाहिए अर्थात् b2 – 4ac = 0

गणना:

⇒ (a + 2)2 – 4(3 – a)4 = 0

⇒ a2 + 4a + 4 – 48 + 16a = 0

⇒ a2 + 20a – 44 = 0

⇒ a2 + 22a – 2a – 44 = 0

⇒ a(a + 22) – 2(a + 22) = 0

⇒ a = 2, -22

∴ a का धनात्मक अभिन्न हल = 2

बहुपद 2x5 + 2x3 y 3 + 4y4 + 5 की डिग्री ज्ञात कीजिए।

  1. 3
  2. 5
  3. 6
  4. 9

Answer (Detailed Solution Below)

Option 3 : 6

Algebra Question 13 Detailed Solution

Download Solution PDF

दिया गया है

2x5 + 2x3y3 + 4y4 + 5

अवधारणा

एक बहुपद की डिग्री गैर-शून्य गुणांकों के लिए इसके प्रत्येक पदों की उच्चतम डिग्री है।

गणना 

2x5 में बहुपद की डिग्री = 5 

2x3y3 में बहुपद की डिग्री = 6 

4y4 में बहुपद की डिग्री = 4

5 में बहुपद की डिग्री = 0

इसलिए, उच्चतम डिग्री 6 है।

∴ बहुपद की डिग्री = 6

  

कोई xहोने की वजह से 5 को सही विकल्प के रूप में चुन सकता है लेकिन यहाँ सही उत्तर 6 होगा क्योंकि 2x3yकी उच्चतम घात 6 है।

Important Points

एक बहुपद की डिग्री गैर-शून्य गुणांकों के लिए इसके प्रत्येक पदों की उच्चतम डिग्री है। यहाँ एक विशिष्ट मान के लिए जब x y के बराबर होगा तब समीकरण होगा:

2x5 + 2x3y3 + 4y+ 5

= 2x5 + 2x6 + 4x4 + 5

बहुपद की डिग्री 6 होगी

मेरी वर्तमान आयु का तीन-पांचवां भाग, मेरे एक कजिन के पांच-छठे भाग के समान है। दस वर्ष पहले की मेरी आयु, चार वर्ष बाद उसकी आयु के बराबर होगी। मेरी वर्तमान आयु ______ वर्ष है।

  1. 55
  2. 45
  3. 60
  4. 50

Answer (Detailed Solution Below)

Option 4 : 50

Algebra Question 14 Detailed Solution

Download Solution PDF

माना मेरी वर्तमान आयु = x वर्ष और मेरे कजिन की आयु = y वर्ष

मेरी वर्तमान आयु का तीन-पांचवां भाग, मेरे एक कजिन के पांच-छठे भाग के समान है,

⇒ 3x/5 = 5y/6

⇒ 18x = 25y

दस वर्ष पहले मेरी आयु, चार वर्ष बाद उसकी आयु के बराबर होगी,

⇒ x – 10 = y + 4

⇒ y = x – 14,

⇒ 18x = 25(x – 14)

⇒ 18x = 25x – 350

⇒ 7x = 350

∴ x = 50 वर्ष

यदि समीकरण x2 – x – 1 = 0 के मूल α और β हैं, तब α/β और β/α मूल वाला समीकरण क्या होगा?

  1. x2 + 3x – 1 = 0
  2. x2 + x – 1 = 0
  3. x2 – x + 1 = 0
  4. x2 + 3x + 1 = 0

Answer (Detailed Solution Below)

Option 4 : x2 + 3x + 1 = 0

Algebra Question 15 Detailed Solution

Download Solution PDF

दिया हुआ:

x2 - x - 1 = 0

उपयोग किया गया सूत्र:

यदि दिए गए समीकरण ax2 + bx + c = 0 है

फिर मूलों का योग = -b/a

मूलों का गुणनफल = c/a

गणना:

चूंकि समीकरण x2 – x – 1 = 0 के मूल α और β हैं, तब

⇒ α + β = -(-1) = 1

⇒ αβ = -1

अब, यदि (α/β) और (β/α) मूल हैं तब,

⇒ मूलों का योग = (α/β) + (β/α)

⇒ मूलों का योग = (α2 + β2)/αβ

⇒ मूलों का योग = {(α + β)2 – 2αβ}/αβ

⇒ मूलों का योग = {(1)2 – 2(-1)}/(-1) = -3

⇒ मूलों का गुणनफल = (α/β) × (β/α) = 1

अब, समीकरण है,

⇒ x2 – (मूलों का योग)x + मूलों का गुणनफल = 0

⇒ x2 – (-3)x + (1) = 0

⇒ x2 + 3x + 1 = 0
Get Free Access Now
Hot Links: teen patti online teen patti sweet teen patti master 2023 teen patti master downloadable content teen patti party