यदि आव्यूह A = \(\left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ 4&{ - 3}&4 \\ 3&{ - 3}&4 \end{array}} \right]\) = B + C, जहाँ B सममित और C विषम सममित आव्यूह है , तो आव्यूह B ज्ञात कीजिए 

This question was previously asked in
AAI ATC Junior Executive 27 July 2022 Shift 2 Official Paper
View all AAI JE ATC Papers >
  1. \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&3&4 \\ { - 3}&0&{ - 7} \\ { - 4}&7&0 \end{array}} \right]\)
  2. \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&5&2 \\ 5&{ - 6}&1 \\ 2&1&8 \end{array}} \right]\)
  3. \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&1&2 \\ 1&{ - 2}&1 \\ 1&2&4 \end{array}} \right]\)
  4. \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&{ - 3}&{ - 4} \\ 3&0&7 \\ 4&{ - 7}&0 \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&5&2 \\ 5&{ - 6}&1 \\ 2&1&8 \end{array}} \right]\)
Free
AAI ATC JE Physics Mock Test
6.6 K Users
15 Questions 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

व्याख्या:

दिया गया है, आव्यूह A = \(\left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ 4&{ - 3}&4 \\ 3&{ - 3}&4 \end{array}} \right]\) 

A = B + C

यहाँ आव्यूह A को सममित और विषम सममित आव्यूह के योग के रूप में व्यक्त किया गया है।

तब, \(B=\frac{1}{2}(A+A^{T}) \ और \ C=\frac{1}{2}(A-A^{T})\)

जहाँ B सममित है और C विषम सममित आव्यूह है।

ज्ञात करें: आव्यूह B

A = \(\left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ 4&{ - 3}&4 \\ 3&{ - 3}&4 \end{array}} \right]\) 

\(A^{T}=\begin{bmatrix} 0 & 4& 3 \\ 1 & -3 & -3 \\ -1& 4& 4 \\ \end{bmatrix}\)

\(A+ A^{T}=\left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ 4&{ - 3}&4 \\ 3&{ - 3}&4 \end{array}} \right] +\begin{bmatrix} 0 & 4& 3 \\ 1 & -3 & -3 \\ -1& 4& 4 \\ \end{bmatrix}\)

\(A+ A^{T}=\begin{bmatrix} 0 &5 & 2 \\ 5& -6 & 1 \\ 2& 1 & 8 \\ \end{bmatrix}\)

\(B=\frac{1}{2}(A+ A^{T})=\frac{1}{2}\begin{bmatrix} 0 &5 & 2 \\ 5& -6 & 1 \\ 2& 1 & 8 \\ \end{bmatrix}\)

Latest AAI JE ATC Updates

Last updated on May 26, 2025

-> AAI ATC exam date 2025 will be notified soon. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on 4th April 2025, along with the details of application dates, eligibility, and selection process.

-> Total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

More Types of Matrices Questions

More Matrices Questions

Get Free Access Now
Hot Links: teen patti yes teen patti vungo lucky teen patti