करणी आणि घातांक MCQ Quiz in मराठी - Objective Question with Answer for Surds and Indices - मोफत PDF डाउनलोड करा

Last updated on Jun 3, 2025

पाईये करणी आणि घातांक उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा करणी आणि घातांक एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Surds and Indices MCQ Objective Questions

करणी आणि घातांक Question 1:

जर \(\rm x = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}}\) असेल, तर x2 + x-2 चे मूल्य काढा:

  1. 350
  2. 345
  3. 284
  4. 322

Answer (Detailed Solution Below)

Option 4 : 322

Surds and Indices Question 1 Detailed Solution

दिलेले आहे:

\(\rm x = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}}\)

वापरलेली संकल्पना:

जर x + 1/x = a असेल, तर x2 + 1/x2 = a2 - 2

गणना:

\(\rm x = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}}\)

\(\rm \frac{1}{x} = \frac{{\sqrt 5 + 2}}{{\sqrt 5 - 2}}\)

⇒ x + 1/x = \(\frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}} + \frac{{\sqrt 5 + 2}}{{\sqrt 5 - 2}}\)

⇒ x + 1/x = \(\frac{(\sqrt 5 - 2)^2 + (\sqrt 5 + 2)^2}{(\sqrt 5 +2)(\sqrt 5 - 2)}\)

⇒ x + 1/x = 18

x2 + 1/x2 = a2 - 2

⇒ x2 + 1/x2 = 182 - 2

⇒ 322

∴ पर्याय 4 योग्य आहे.

करणी आणि घातांक Question 2:

सरलीकृत करा:

\(\sqrt{(159-\sqrt{(244-\sqrt{(375-\sqrt{196})})})}\)

  1. 14
  2. 16
  3. 13
  4. 12

Answer (Detailed Solution Below)

Option 4 : 12

Surds and Indices Question 2 Detailed Solution

गणना:

\(√{(159-√{(244-√{(375-√{196})})})}\)

\(√{(159-√{(244-√{(375- 14)})})}\)

\(√{(159-√{(244-√{(361)})})}\)

\(√{(159-√{(244-19)})}\)

\(√{(159-√{(225)})}\)

\(√{(159-15)}\)

√144

12

∴ पर्याय 4 हे योग्य उत्तर आहे.

करणी आणि घातांक Question 3:

सरळरूप द्या:

(24 × 36 × 24 × 36) ÷ (2\((\sqrt {1296 \div 2})\))2

  1. 521 
  2. 288
  3. 484 
  4. 676 

Answer (Detailed Solution Below)

Option 2 : 288

Surds and Indices Question 3 Detailed Solution

गणना:

⇒ (24 × 36 × 24 × 36) ÷ (2(\(\sqrt {1296 \div 2)} {)^2}\)

⇒ (24 × 36 × 24 × 36) ÷ (2 ×\(\sqrt {648}\) )2
 
⇒ (24 × 36 × 24 × 36) ÷ (4 × 648)
 
⇒ 288
 
∴ योग्य उत्तर पर्याय 2 आहे).
 

करणी आणि घातांक Question 4:

\(\left( {\frac{{67}}{{63}}} \right)^2 \times \left( {\frac{{67}}{{63}}} \right)^{-1} \times \left( {\frac{{67}}{{63}}} \right)^{-2} \times \left( {\frac{{63}}{{67}}} \right) \) = ?

  1. \(\frac{3969}{4489}\)
  2. \(\frac{3829}{4562}\)
  3. \(\frac{3251}{4295}\)
  4. \(\frac{3921}{4629}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{3969}{4489}\)

Surds and Indices Question 4 Detailed Solution

वापरलेली संकल्पना:

a m xa n = a m + n

आणि a m = (1/a) -m

गणना:

\(\left( {\frac{{67}}{{63}}} \right)^2 \times \left( {\frac{{67}}{{63}}} \right)^{-1 } \times \left( {\frac{{67}}{{63}}} \right)^{-2} \times \left( {\frac{{63}}{{67}}} \right) \)

\( ⇒ \left( {\frac{{67}}{{63}}} \right)^2 \times \left( {\frac{{67}}{{63}}} \right)^{- 1} \times \left( {\frac{{67}}{{63}}} \right)^{-2} \times \left( {\frac{{67}}{{63}}} \right )^{-1} \)

\( ⇒ \left( {\frac{{67}}{{63}}} \right)^{2-1-2-1} = \left( {\frac{{67}}{{63}} } \right)^{-2}= \left( {\frac{{63}}{{67}}} \right)^{2}\)

\( ⇒ \left(\frac{63^2}{67^2} \right) = \frac{3969}{4489}\)

करणी आणि घातांक Question 5:

सरळरूप द्या:

\({625^{0.17}} \times {625^{0.08}} = {25^?} \times {25^{ - \frac{3}{2}}}\)

  1. 1
  2. 2
  3. 3
  4. 0.5

Answer (Detailed Solution Below)

Option 2 : 2

Surds and Indices Question 5 Detailed Solution

अशाप्रकारचे प्रश्न सोडवण्यासाठी खाली दिलेले 'करणी व घातांक' यांच्या नियमांचे पालन करा:

घातांकाचे नियम:

1. am × an = a{m + n}

2. am ÷ an = a{m - n}

3. (am)n = amn

4. (a)-m = 1/am

5. (a)m/n = n√am

6. (a)0 = 1

\({625^{0.17}} \times {625^{0.08}} = {25^?} \times {25^{- \frac{3}{2}}}\)

\(\Rightarrow {625^{0.17\; + \;0.08}} = {25^{? + (- \frac{3}{2})}}\)

\(\Rightarrow {625^{0.25}} = {25^{? - \frac{3}{2}}}\)

\(\Rightarrow {625^{\frac{1}{4}}} = {\left( {{5^2}} \right)^{? - \frac{3}{2}}}\)

\(\Rightarrow 5 = {5^{2 \times? - 3}}\)

⇒ 2 × ? - 3 = 1

⇒ ? = (1 + 3)/2

∴ ? = 2

Top Surds and Indices MCQ Objective Questions

(8 + 2√15)चे वर्गमूळ काय ?

  1. √5 + √3
  2. 2√2 + 2√6
  3. 2√5 + 2√3
  4. √2 + √6

Answer (Detailed Solution Below)

Option 1 : √5 + √3

Surds and Indices Question 6 Detailed Solution

Download Solution PDF

वापरलेले सुत्र:

(a + b)2 = a2 + b2 + 2ab

गणना:

दिलेली पदावली आहे:

\(\sqrt {8\; + \;2\sqrt {15} \;} \)

⇒ \(\sqrt {5\; + \;3\; + \;2\times \sqrt 5 \times \sqrt 3 \;} \)

⇒  \(\sqrt {{{(\sqrt 5 )}^2}\; + \;{{\left( {\sqrt 3 } \right)}^2}\; + \;2 \times \sqrt 5 \times \sqrt 3 \;} \)

⇒  \(\sqrt {{{\left( {\;\sqrt 5 \; + \;\sqrt 3 \;} \right)}^2}\;} \)

⇒  \(\sqrt 5 + \sqrt 3 \)

(10 + √25) (12 - √49) चे वर्गमूळ आहे:

  1. 4√3 
  2. 3√3
  3. 5√3
  4. 2√3

Answer (Detailed Solution Below)

Option 3 : 5√3

Surds and Indices Question 7 Detailed Solution

Download Solution PDF

संकल्पना:

आपण गुणखंडन पद्धतीने x शोधू शकतो.

हिशोब:

√[(10 + √25) (12 - √49)]

⇒ √(10 + 5)(12 – 7)

⇒ √(15 × 5)

⇒ √(3 × 5 × 5)

⇒ 5√3

x चे मूल्य काढा.

23 × 34 × 1080 ÷ 15 = 6x

  1. 4
  2. 6
  3. 8
  4. 2

Answer (Detailed Solution Below)

Option 2 : 6

Surds and Indices Question 8 Detailed Solution

Download Solution PDF

दिलेले आहे,

23 × 34 × 1080 ÷ 15 = 6x

⇒ 23 × 34 × 72 = 6x

⇒ 23 × 34 × (2 × 62) = 6x

⇒ 24 × 34 × 62 = 6x

⇒ (2 × 3)4 × 62 = 6x           [∵ xm × ym = (xy)m]

⇒ 64 × 62 = 6x

⇒ 6(4 + 2) = 6x

⇒ x = 6

जर √3n = 729, तर n चे मूल्य शोधा.

  1. 6
  2. 8
  3. 12
  4. 9

Answer (Detailed Solution Below)

Option 3 : 12

Surds and Indices Question 9 Detailed Solution

Download Solution PDF

दिलेले आहे:

√3n = 729

वापरलेले सूत्र:

(xa)b = xab

जर xa = xb तर a = b 

गणना:

√3n = 729

⇒ √3n = (32)3

⇒ (3n)1/2 = (32)3

⇒ (3n)1/2 = 36

⇒ n/2 = 6 

∴  n = 12 

सोडवा:

\(\sqrt {11 - 2\sqrt {30} }\)

  1. \(\sqrt 6 + \sqrt 5 \)
  2. 6
  3. \(\sqrt 6 - \sqrt 5\)
  4. \(6 - \sqrt 5\)

Answer (Detailed Solution Below)

Option 3 : \(\sqrt 6 - \sqrt 5\)

Surds and Indices Question 10 Detailed Solution

Download Solution PDF
\(\begin{array}{l} \sqrt {11 - 2\sqrt {30} } \\ = \sqrt {\left( {11} \right) - 2\sqrt 6 \times \sqrt 5 } \\ = \sqrt {\left( {6 + 5} \right) - 2\sqrt 6 \times \sqrt 5 } \\ = \sqrt {{{\left( {\sqrt 6 } \right)}^2} + {{\left( {\sqrt 5 } \right)}^2} - 2\sqrt 6 \times \sqrt 5 } \\ = \sqrt {{{\left( {\sqrt 6 - \sqrt 5 } \right)}^2}} \\ = \sqrt 6 - \sqrt 5 \end{array}\)

जर (3 + 2√5)2 = 29 + K√5, तर K चे मूल्य किती?

  1. 12
  2. 6
  3. 29
  4. 39

Answer (Detailed Solution Below)

Option 1 : 12

Surds and Indices Question 11 Detailed Solution

Download Solution PDF

पद्धत I: (3 + 2√5)2

= (32 + (2√5)2 + 2 × 3 × 2√5)

= 9 + 20 + 12√5 = 29 + 12√5

तुलना केल्यास, 29 + 12√5 = 29 + K√5

आपल्याकडे,

K = 12

Additional Information

29 + 12√5 = 29 + K√5

⇒ K√5 = 29 - 29 + 12√5

⇒ K√5 = 12√5

∴ K = 12

जर (3/5)x = 81/625, तर xx  चे मुल्य काय आहे?

  1. 16
  2. 256
  3. 0
  4. 32

Answer (Detailed Solution Below)

Option 2 : 256

Surds and Indices Question 12 Detailed Solution

Download Solution PDF

दिल्याप्रमाणे:

(3/5)x = 81/625

गणना:

आपणास माहित आहे,

34 = 81 and 54 = 625

⇒ (3/5)4 = 81/625

(3/5)x = 81/625

∴ दोन्ही समीकरणांची तुलना केल्यास, आपणास मिळते

x = 4

आता, 

 xx  = 44 = 256

सरळरूप द्या:

\({625^{0.17}} \times {625^{0.08}} = {25^?} \times {25^{ - \frac{3}{2}}}\)

  1. 1
  2. 2
  3. 3
  4. 0.5

Answer (Detailed Solution Below)

Option 2 : 2

Surds and Indices Question 13 Detailed Solution

Download Solution PDF

अशाप्रकारचे प्रश्न सोडवण्यासाठी खाली दिलेले 'करणी व घातांक' यांच्या नियमांचे पालन करा:

घातांकाचे नियम:

1. am × an = a{m + n}

2. am ÷ an = a{m - n}

3. (am)n = amn

4. (a)-m = 1/am

5. (a)m/n = n√am

6. (a)0 = 1

\({625^{0.17}} \times {625^{0.08}} = {25^?} \times {25^{- \frac{3}{2}}}\)

\(\Rightarrow {625^{0.17\; + \;0.08}} = {25^{? + (- \frac{3}{2})}}\)

\(\Rightarrow {625^{0.25}} = {25^{? - \frac{3}{2}}}\)

\(\Rightarrow {625^{\frac{1}{4}}} = {\left( {{5^2}} \right)^{? - \frac{3}{2}}}\)

\(\Rightarrow 5 = {5^{2 \times? - 3}}\)

⇒ 2 × ? - 3 = 1

⇒ ? = (1 + 3)/2

∴ ? = 2

जर 2x = 4y = 8z व \(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}=4\), तर x ची किंमत किती?

  1. \(\frac{7}{16}\)
  2. \(\frac{7}{17}\)
  3. \(\frac{7}{19}\)
  4. \(\frac{7}{23}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{7}{16}\)

Surds and Indices Question 14 Detailed Solution

Download Solution PDF

दिलेले आहे:

2x = 4y = 8z

\(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}=4\)

गणना:

2x = 4y = 8z

⇒ 2x = 22y = 23z

⇒ x = 2y = 3z

\(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}=4\)

⇒ \(\frac{1}{2x}+\frac{1}{2x}+\frac{3}{4x}=4 \)

⇒ 7/4x = 4

∴ x = 7/16

जर A = 83 × 54 आणि B = 85 × 53 , तर A × B चे मूल्य किती असेल?

  1. 216 × 58
  2. 824 × 57
  3. 424 × 57
  4. 224 × 57

Answer (Detailed Solution Below)

Option 4 : 224 × 57

Surds and Indices Question 15 Detailed Solution

Download Solution PDF

A = 83 × 5आणि B = 85 × 53

⇒ A × B = 83 × 54 × 85 × 53

⇒ A × B = 23(3 + 5) × 5(4 +3)

⇒ A × B = 224 × 57

Get Free Access Now
Hot Links: lucky teen patti teen patti master new version teen patti all teen patti casino teen patti gold download apk