करणी आणि घातांक MCQ Quiz in मराठी - Objective Question with Answer for Surds and Indices - मोफत PDF डाउनलोड करा
Last updated on Jun 3, 2025
Latest Surds and Indices MCQ Objective Questions
करणी आणि घातांक Question 1:
जर \(\rm x = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}}\) असेल, तर x2 + x-2 चे मूल्य काढा:
Answer (Detailed Solution Below)
Surds and Indices Question 1 Detailed Solution
दिलेले आहे:
\(\rm x = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}}\)
वापरलेली संकल्पना:
जर x + 1/x = a असेल, तर x2 + 1/x2 = a2 - 2
गणना:
⇒ \(\rm x = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}}\)
⇒ \(\rm \frac{1}{x} = \frac{{\sqrt 5 + 2}}{{\sqrt 5 - 2}}\)
⇒ x + 1/x = \(\frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}} + \frac{{\sqrt 5 + 2}}{{\sqrt 5 - 2}}\)
⇒ x + 1/x = \(\frac{(\sqrt 5 - 2)^2 + (\sqrt 5 + 2)^2}{(\sqrt 5 +2)(\sqrt 5 - 2)}\)
⇒ x + 1/x = 18
⇒ x2 + 1/x2 = a2 - 2
⇒ x2 + 1/x2 = 182 - 2
⇒ 322
∴ पर्याय 4 योग्य आहे.
करणी आणि घातांक Question 2:
सरलीकृत करा:
\(\sqrt{(159-\sqrt{(244-\sqrt{(375-\sqrt{196})})})}\)
Answer (Detailed Solution Below)
Surds and Indices Question 2 Detailed Solution
गणना:
\(√{(159-√{(244-√{(375-√{196})})})}\)
\(√{(159-√{(244-√{(375- 14)})})}\)
\(√{(159-√{(244-√{(361)})})}\)
\(√{(159-√{(244-19)})}\)
\(√{(159-√{(225)})}\)
\(√{(159-15)}\)
√144
12
∴ पर्याय 4 हे योग्य उत्तर आहे.
करणी आणि घातांक Question 3:
सरळरूप द्या:
(24 × 36 × 24 × 36) ÷ (2\((\sqrt {1296 \div 2})\))2
Answer (Detailed Solution Below)
Surds and Indices Question 3 Detailed Solution
गणना:
⇒ (24 × 36 × 24 × 36) ÷ (2(\(\sqrt {1296 \div 2)} {)^2}\)
करणी आणि घातांक Question 4:
\(\left( {\frac{{67}}{{63}}} \right)^2 \times \left( {\frac{{67}}{{63}}} \right)^{-1} \times \left( {\frac{{67}}{{63}}} \right)^{-2} \times \left( {\frac{{63}}{{67}}} \right) \) = ?
Answer (Detailed Solution Below)
Surds and Indices Question 4 Detailed Solution
वापरलेली संकल्पना:
a m xa n = a m + n
आणि a m = (1/a) -m
गणना:
\(\left( {\frac{{67}}{{63}}} \right)^2 \times \left( {\frac{{67}}{{63}}} \right)^{-1 } \times \left( {\frac{{67}}{{63}}} \right)^{-2} \times \left( {\frac{{63}}{{67}}} \right) \)
\( ⇒ \left( {\frac{{67}}{{63}}} \right)^2 \times \left( {\frac{{67}}{{63}}} \right)^{- 1} \times \left( {\frac{{67}}{{63}}} \right)^{-2} \times \left( {\frac{{67}}{{63}}} \right )^{-1} \)
\( ⇒ \left( {\frac{{67}}{{63}}} \right)^{2-1-2-1} = \left( {\frac{{67}}{{63}} } \right)^{-2}= \left( {\frac{{63}}{{67}}} \right)^{2}\)
\( ⇒ \left(\frac{63^2}{67^2} \right) = \frac{3969}{4489}\)
करणी आणि घातांक Question 5:
सरळरूप द्या:
\({625^{0.17}} \times {625^{0.08}} = {25^?} \times {25^{ - \frac{3}{2}}}\)
Answer (Detailed Solution Below)
Surds and Indices Question 5 Detailed Solution
अशाप्रकारचे प्रश्न सोडवण्यासाठी खाली दिलेले 'करणी व घातांक' यांच्या नियमांचे पालन करा:
घातांकाचे नियम:
1. am × an = a{m + n}
2. am ÷ an = a{m - n}
3. (am)n = amn
4. (a)-m = 1/am
5. (a)m/n = n√am
6. (a)0 = 1
\({625^{0.17}} \times {625^{0.08}} = {25^?} \times {25^{- \frac{3}{2}}}\)
\(\Rightarrow {625^{0.17\; + \;0.08}} = {25^{? + (- \frac{3}{2})}}\)
\(\Rightarrow {625^{0.25}} = {25^{? - \frac{3}{2}}}\)
\(\Rightarrow {625^{\frac{1}{4}}} = {\left( {{5^2}} \right)^{? - \frac{3}{2}}}\)
\(\Rightarrow 5 = {5^{2 \times? - 3}}\)
⇒ 2 × ? - 3 = 1
⇒ ? = (1 + 3)/2
∴ ? = 2
Top Surds and Indices MCQ Objective Questions
(8 + 2√15)चे वर्गमूळ काय ?
Answer (Detailed Solution Below)
Surds and Indices Question 6 Detailed Solution
Download Solution PDFवापरलेले सुत्र:
(a + b)2 = a2 + b2 + 2ab
गणना:
दिलेली पदावली आहे:
\(\sqrt {8\; + \;2\sqrt {15} \;} \)
⇒ \(\sqrt {5\; + \;3\; + \;2\times \sqrt 5 \times \sqrt 3 \;} \)
⇒ \(\sqrt {{{(\sqrt 5 )}^2}\; + \;{{\left( {\sqrt 3 } \right)}^2}\; + \;2 \times \sqrt 5 \times \sqrt 3 \;} \)
⇒ \(\sqrt {{{\left( {\;\sqrt 5 \; + \;\sqrt 3 \;} \right)}^2}\;} \)
⇒ \(\sqrt 5 + \sqrt 3 \)
(10 + √25) (12 - √49) चे वर्गमूळ आहे:
Answer (Detailed Solution Below)
Surds and Indices Question 7 Detailed Solution
Download Solution PDFसंकल्पना:
आपण गुणखंडन पद्धतीने x शोधू शकतो.
हिशोब:
√[(10 + √25) (12 - √49)]
⇒ √(10 + 5)(12 – 7)
⇒ √(15 × 5)
⇒ √(3 × 5 × 5)
⇒ 5√3Answer (Detailed Solution Below)
Surds and Indices Question 8 Detailed Solution
Download Solution PDFदिलेले आहे,
23 × 34 × 1080 ÷ 15 = 6x
⇒ 23 × 34 × 72 = 6x
⇒ 23 × 34 × (2 × 62) = 6x
⇒ 24 × 34 × 62 = 6x
⇒ (2 × 3)4 × 62 = 6x [∵ xm × ym = (xy)m]
⇒ 64 × 62 = 6x
⇒ 6(4 + 2) = 6x
⇒ x = 6
जर √3n = 729, तर n चे मूल्य शोधा.
Answer (Detailed Solution Below)
Surds and Indices Question 9 Detailed Solution
Download Solution PDFदिलेले आहे:
√3n = 729
वापरलेले सूत्र:
(xa)b = xab
जर xa = xb तर a = b
गणना:
√3n = 729
⇒ √3n = (32)3
⇒ (3n)1/2 = (32)3
⇒ (3n)1/2 = 36
⇒ n/2 = 6
∴ n = 12
Answer (Detailed Solution Below)
Surds and Indices Question 10 Detailed Solution
Download Solution PDFजर (3 + 2√5)2 = 29 + K√5, तर K चे मूल्य किती?
Answer (Detailed Solution Below)
Surds and Indices Question 11 Detailed Solution
Download Solution PDFपद्धत I: (3 + 2√5)2
= (32 + (2√5)2 + 2 × 3 × 2√5)
= 9 + 20 + 12√5 = 29 + 12√5
तुलना केल्यास, 29 + 12√5 = 29 + K√5
आपल्याकडे,
K = 12
Additional Information
29 + 12√5 = 29 + K√5
⇒ K√5 = 29 - 29 + 12√5
⇒ K√5 = 12√5
∴ K = 12
जर (3/5)x = 81/625, तर xx चे मुल्य काय आहे?
Answer (Detailed Solution Below)
Surds and Indices Question 12 Detailed Solution
Download Solution PDFदिल्याप्रमाणे:
(3/5)x = 81/625
गणना:
आपणास माहित आहे,
34 = 81 and 54 = 625
⇒ (3/5)4 = 81/625
(3/5)x = 81/625
∴ दोन्ही समीकरणांची तुलना केल्यास, आपणास मिळते
x = 4
आता,
xx = 44 = 256
सरळरूप द्या:
\({625^{0.17}} \times {625^{0.08}} = {25^?} \times {25^{ - \frac{3}{2}}}\)
Answer (Detailed Solution Below)
Surds and Indices Question 13 Detailed Solution
Download Solution PDFअशाप्रकारचे प्रश्न सोडवण्यासाठी खाली दिलेले 'करणी व घातांक' यांच्या नियमांचे पालन करा:
घातांकाचे नियम:
1. am × an = a{m + n}
2. am ÷ an = a{m - n}
3. (am)n = amn
4. (a)-m = 1/am
5. (a)m/n = n√am
6. (a)0 = 1
\({625^{0.17}} \times {625^{0.08}} = {25^?} \times {25^{- \frac{3}{2}}}\)
\(\Rightarrow {625^{0.17\; + \;0.08}} = {25^{? + (- \frac{3}{2})}}\)
\(\Rightarrow {625^{0.25}} = {25^{? - \frac{3}{2}}}\)
\(\Rightarrow {625^{\frac{1}{4}}} = {\left( {{5^2}} \right)^{? - \frac{3}{2}}}\)
\(\Rightarrow 5 = {5^{2 \times? - 3}}\)
⇒ 2 × ? - 3 = 1
⇒ ? = (1 + 3)/2
∴ ? = 2
जर 2x = 4y = 8z व \(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}=4\), तर x ची किंमत किती?
Answer (Detailed Solution Below)
Surds and Indices Question 14 Detailed Solution
Download Solution PDFदिलेले आहे:
2x = 4y = 8z
\(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}=4\)
गणना:
2x = 4y = 8z
⇒ 2x = 22y = 23z
⇒ x = 2y = 3z
\(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}=4\)
⇒ \(\frac{1}{2x}+\frac{1}{2x}+\frac{3}{4x}=4 \)
⇒ 7/4x = 4
∴ x = 7/16
जर A = 83 × 54 आणि B = 85 × 53 , तर A × B चे मूल्य किती असेल?
Answer (Detailed Solution Below)
Surds and Indices Question 15 Detailed Solution
Download Solution PDFA = 83 × 54 आणि B = 85 × 53
⇒ A × B = 83 × 54 × 85 × 53
⇒ A × B = 23(3 + 5) × 5(4 +3)
⇒ A × B = 224 × 57