Surds and Indices MCQ Quiz - Objective Question with Answer for Surds and Indices - Download Free PDF

Last updated on May 23, 2025

Surds and Indices often show themselves up in the competitive exams syllabus therefore it’s important to prepare them effectively. Solve Surds and Indices MCQs Quiz so that you never will have to depend on fluke chances for your answer to be correct. Get solutions and their explanations for each and every Surds and Indices question answer listed in this selection of Surds and Indices objective questions. We also have mentioned tips and shortcuts to solve these questions to save time and improve accuracy.

Latest Surds and Indices MCQ Objective Questions

Surds and Indices Question 1:

Simplify the following expression:

\(\frac{(8.25)^3-3 \times(8.25)^2 \times 0.25+24.75 \times(0.25)^2-(0.25)^3}{4 \times 4 \times 4}\)

  1. 6
  2. 4
  3. 2
  4. 8
  5. None of the above

Answer (Detailed Solution Below)

Option 4 : 8

Surds and Indices Question 1 Detailed Solution

Given:

Simplify the following expression:

\(\dfrac{(8.25)^3-3 \times(8.25)^2 \times 0.25+24.75 \times(0.25)^2-(0.25)^3}{4 \times 4 \times 4}\)

Formula used:

(a - b)3 = a3 - 3a2b + 3ab2 - b3

Calculation:

\(\dfrac{(8.25)^3-3 \times(8.25)^2 \times 0.25+24.75 \times(0.25)^2-(0.25)^3}{4 \times 4 \times 4}\)

Let a = 8.25 and b = 0.25

⇒ a3 - 3a2b + 3ab2 - b3 = (8.25 - 0.25)3

(8.25 - 0.25)3 = 83

⇒ 83 = 512

⇒ \(\dfrac{512}{4 \times 4 \times 4}\)

⇒ \(\dfrac{512}{64}\)

⇒ 8

∴ The correct answer is option (4).

Surds and Indices Question 2:

If (125)x = 3125, then, x = ? 

  1. 5
  2. 3/5
  3. 3
  4. 5/3
  5. None of the above

Answer (Detailed Solution Below)

Option 4 : 5/3

Surds and Indices Question 2 Detailed Solution

Given:

(125)x = 3125

Formula Used:

To find the value of x" id="MathJax-Element-78-Frame" role="presentation" style="position: relative;" tabindex="0">x" id="MathJax-Element-9-Frame" role="presentation" style="position: relative;" tabindex="0">x" id="MathJax-Element-5-Frame" role="presentation" style="position: relative;" tabindex="0">x" id="MathJax-Element-3-Frame" role="presentation" style="position: relative;" tabindex="0">x in the equation \((a)x = b\), we can use logarithms or recognize powers.

Calculation:

We know that 125 = 53, so we can rewrite the equation:

(53)x = 3125

Using the power of a power property, (am)n = am×n:

⇒ 53x = 3125

We also know that 3125 = 55, so we can rewrite the equation:

⇒ 53x = 55

Since the bases are the same, we can equate the exponents:

⇒ 3x = 5

⇒ x = 5/3

The correct answer is option 4.

Surds and Indices Question 3:

Simplify (256)0.16 × (256)0.09 = ?

  1. 64
  2. 4
  3. 16
  4. 256.25
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 4

Surds and Indices Question 3 Detailed Solution

Given:

(256)0.16 × (256)0.09 = ?

Calculation:

(256)0.16 × (256)0.09 = ?

Let the unknown number be x.

⇒ (256)0.16 × (256)0.09 = x

⇒ (256)(0.16 + 0.09) = x 

⇒ (256)0.25 = x

⇒ x = (44)1/4 = 4

∴ (256)0.16 × (256)0.09 = 4

Surds and Indices Question 4:

What is it equal to 4(a3b6)16 × 16(a4b2)2?

  1. 1066 (a7 b8)
  2. 4122 (a7 b6)
  3. 2048 (a7 b8​)
  4. 2008 (ab8​)
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 2048 (a7 b8​)

Surds and Indices Question 4 Detailed Solution

Given:

aman = am+n

Calculation:

4(a3b6)16 × 16(a4b2)2

64 a3b6 × 32a4b2

64 × 32 × a3+4  b6+2

By using the above formula

∴ 4(a3b6)16 × 16(a4b2)2 = 2048 × a7b8

Surds and Indices Question 5:

The value of \(\left(\frac{x}{y}\right)^{\mathrm{a}-\mathrm{b}}\times\left(\frac{x}{y}\right)^{\mathrm{b}-\mathrm{c}}\times\left(\frac{x}{y}\right)^{\mathrm{c}-\mathrm{a}}\) is?

  1. \(\left(\frac{x}{y}\right)^{\mathrm{abc}} \)
  2. \(\left(\frac{x}{y}\right)^{\mathrm{a}}\)
  3. 1
  4. \(\frac{x}{y}\)
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 1

Surds and Indices Question 5 Detailed Solution

Formula Used:

a0 = 1

am × an = am + n

Calculation

\(\left(\frac{x}{y}\right)^{\mathrm{a}-\mathrm{b}}\left(\frac{x}{y}\right)^{\mathrm{b}-\mathrm{c}}\left(\frac{x}{y}\right)^{\mathrm{c}-\mathrm{a}} \)

\(⇒ \left(\frac{x}{y}\right)^{\mathrm{a}-\mathrm{b}+\mathrm{b}-\mathrm{c}+\mathrm{c}-\mathrm{a}} \)

\(⇒ (\frac{x}{y})^0 \)

⇒ 1

\(\therefore \left(\frac{x}{y}\right)^{\mathrm{a}-\mathrm{b}}\left(\frac{x}{y}\right)^{\mathrm{b}-\mathrm{c}}\left(\frac{x}{y}\right)^{\mathrm{c}-\mathrm{a}} \) = 1

Top Surds and Indices MCQ Objective Questions

What is the square root of (8 + 2√15)?

  1. √5 + √3
  2. 2√2 + 2√6
  3. 2√5 + 2√3
  4. √2 + √6

Answer (Detailed Solution Below)

Option 1 : √5 + √3

Surds and Indices Question 6 Detailed Solution

Download Solution PDF

Formula used:

(a + b)2 = a2 + b2 + 2ab

Calculation:

Given expression is:

\(\sqrt {8\; + \;2\sqrt {15} \;} \)

⇒  \(\sqrt {5\; + \;3\; + \;2\times \sqrt 5 \times \sqrt 3 \;} \)

⇒  \(\sqrt {{{(\sqrt 5 )}^2}\; + \;{{\left( {\sqrt 3 } \right)}^2}\; + \;2 \times \sqrt 5 \times \sqrt 3 \;} \)

⇒  \(\sqrt {{{\left( {\;\sqrt 5 \; + \;\sqrt 3 \;} \right)}^2}\;} \)

⇒  \(\sqrt 5 + \sqrt 3 \)

The square root of ((10 + √25)(12 – √49)) is:

  1. 4√3 
  2. 3√3
  3. 5√3
  4. 2√3

Answer (Detailed Solution Below)

Option 3 : 5√3

Surds and Indices Question 7 Detailed Solution

Download Solution PDF

Concept:

We can find √x using the factorisation method.

Calculation:

√[(10 + √25) (12 - √49)]

⇒ √[(10 + 5)(12 – 7)]

⇒ √(15 × 5)

⇒ √(3 × 5 × 5)

⇒ 5√3

Find the value of x:

23 × 34 × 1080 ÷ 15 = 6x

  1. 4
  2. 6
  3. 8
  4. 2

Answer (Detailed Solution Below)

Option 2 : 6

Surds and Indices Question 8 Detailed Solution

Download Solution PDF

Given,

23 × 34 × 1080 ÷ 15 = 6x

⇒ 23 × 34 × 72 = 6x

⇒ 23 × 34 × (2 × 62) = 6x

⇒ 24 × 34 × 62 = 6x

⇒ (2 × 3)4 × 62 = 6x           [∵ xm × ym = (xy)m]

⇒ 64 × 62 = 6x

⇒ 6(4 + 2) = 6x

⇒ x = 6

If √3n = 729, then the value of n is equal to:

  1. 6
  2. 8
  3. 12
  4. 9

Answer (Detailed Solution Below)

Option 3 : 12

Surds and Indices Question 9 Detailed Solution

Download Solution PDF

Given:

√3n = 729

Formulas used:

(xa)b = xab

If xa = xb then a = b 

Calculation:

√3n = 729

⇒ √3n = (32)3

⇒ (3n)1/2 = (32)3

⇒ (3n)1/2 = 36

⇒ n/2 = 6 

∴  n = 12 

Simplify:

\(\sqrt {11 - 2\sqrt {30} }\)

  1. \(\sqrt 6 + \sqrt 5 \)
  2. 6
  3. \(\sqrt 6 - \sqrt 5\)
  4. \(6 - \sqrt 5\)

Answer (Detailed Solution Below)

Option 3 : \(\sqrt 6 - \sqrt 5\)

Surds and Indices Question 10 Detailed Solution

Download Solution PDF
\(\begin{array}{l} \sqrt {11 - 2\sqrt {30} } \\ = \sqrt {\left( {11} \right) - 2\sqrt 6 \times \sqrt 5 } \\ = \sqrt {\left( {6 + 5} \right) - 2\sqrt 6 \times \sqrt 5 } \\ = \sqrt {{{\left( {\sqrt 6 } \right)}^2} + {{\left( {\sqrt 5 } \right)}^2} - 2\sqrt 6 \times \sqrt 5 } \\ = \sqrt {{{\left( {\sqrt 6 - \sqrt 5 } \right)}^2}} \\ = \sqrt 6 - \sqrt 5 \end{array}\)

If (3 + 2√5)2 = 29 + K√5, then what is the value of K?

  1. 12
  2. 6
  3. 29
  4. 39

Answer (Detailed Solution Below)

Option 1 : 12

Surds and Indices Question 11 Detailed Solution

Download Solution PDF

Method I: (3 + 2√5)2

= (32 + (2√5)2 + 2 × 3 × 2√5)

= 9 + 20 + 12√5 = 29 + 12√5

On comparing, 29 + 12√5 = 29 + K√5

we get,

K = 12

 Alternate Method 

29 + 12√5 = 29 + K√5

⇒ K√5 = 29 - 29 + 12√5

⇒ K√5 = 12√5

∴ K = 12

Which of the following statement(s) is/are TRUE?

I. 2√3 > 3√2

II. 4√2 > 2√8

  1. Only I
  2. Only II
  3. Neither I nor II
  4. Both I and II

Answer (Detailed Solution Below)

Option 3 : Neither I nor II

Surds and Indices Question 12 Detailed Solution

Download Solution PDF

Statement I:

2√3 > 3√2
To Check either above given relation is correct or not, simplifying by squaring on both the sides.

⇒ (2√3)2 > (3√2)2

⇒ 12 > 18 which is not true, as we know that 18 is greater than 12.

So, the given relation in statement I is not true.

Statement II:
Now, simplifying the values given in statement II

(Note: 2√8 = 2√(4 × 2) = 4√2)

4√2 > 2√8 on taking the square root from the right hand side.

⇒ 4√2 > 2 × 2√2

⇒ 4√2 > 4√2 which is not true, as the the value on left hand side is equal to the value on right hand side. 
So, the given relation in statement II is also not true.

∴ Neither statement I nor statement II is true.

If (3/5)x = 81/625, then what is the value of xx?

  1. 16
  2. 256
  3. 0
  4. 32

Answer (Detailed Solution Below)

Option 2 : 256

Surds and Indices Question 13 Detailed Solution

Download Solution PDF

Given:

(3/5)x = 81/625

Calculation:

We know,

34 = 81 and 54 = 625

⇒ (3/5)4 = 81/625

(3/5)x = 81/625

∴ On comparing both the equation, we get

x = 4

Now, 

 xx  = 44 = 256

Simplify:

\({625^{0.17}} \times {625^{0.08}} = {25^?} \times {25^{ - \frac{3}{2}}}\)

  1. 1
  2. 2
  3. 3
  4. 0.5

Answer (Detailed Solution Below)

Option 2 : 2

Surds and Indices Question 14 Detailed Solution

Download Solution PDF

To solve questions of this type, follow the laws of “Surds and indices’’ given below:

Laws of Indices:

1. am × an = a{m + n}

2. am ÷ an = a{m - n}

3. (am)n = amn

4. (a)-m = 1/am

5. (a)m/n = n√am

6. (a)0 = 1

\({625^{0.17}} \times {625^{0.08}} = {25^?} \times {25^{- \frac{3}{2}}}\)

\(\Rightarrow {625^{0.17\; + \;0.08}} = {25^{? + (- \frac{3}{2})}}\)

\(\Rightarrow {625^{0.25}} = {25^{? - \frac{3}{2}}}\)

\(\Rightarrow {625^{\frac{1}{4}}} = {\left( {{5^2}} \right)^{? - \frac{3}{2}}}\)

\(\Rightarrow 5 = {5^{2 \times? - 3}}\)

⇒ 2 × ? - 3 = 1

⇒ ? = (1 + 3)/2

∴ ? = 2

If 2x = 4y = 8z and \(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}=4\), then the value of x is:

  1. \(\frac{7}{16}\)
  2. \(\frac{7}{17}\)
  3. \(\frac{7}{19}\)
  4. \(\frac{7}{23}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{7}{16}\)

Surds and Indices Question 15 Detailed Solution

Download Solution PDF

Given:

2x = 4y = 8z

\(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}=4\)

Calculation:

\(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}=4\)---- (1)

2x = 4y = 8z

⇒ 2x = 22y = 23z

⇒ x = 2y = 3z

Converting y and z in x

2y = x, so 4y = 2x

3z = x, so 4z = 4x/3

Using the above value in equation (1)

⇒ \(\frac{1}{2x}+\frac{1}{2x}+\frac{3}{4x}=4 \)    

⇒ 7/4x = 4

∴ x = 7/16

Get Free Access Now
Hot Links: teen patti 100 bonus teen patti download teen patti fun teen patti 3a