tan-1x के संबंध में \(\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\) का अवकलज है:

This question was previously asked in
AAI ATC Junior Executive 21 Feb 2023 Shift 2 Official Paper
View all AAI JE ATC Papers >
  1. \(\frac{\sqrt{1+x^2}-1}{x^2}\)
  2. \(\frac{1}{2}\)
  3. 1
  4. \(\frac{1}{1+x^2}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{1}{2}\)
Free
AAI ATC JE Physics Mock Test
7.1 K Users
15 Questions 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

दिया गया है:

tan-1x के संबंध में \(\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\) का अवकलज है:

अवधारणा:

g(x) के संबंध में f(x) का अवकलज \(\rm \frac{f'(x)}{g'(x)}\) है।

गणना:

माना \(f(x)=\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\) और g(x) = tan-1x

फिर f(x) में x = tanθ रखने पर

\(\rm f(x)=\tan^{-1}\left(\frac{sec\theta-1}{tan\theta}\right)\)

\(\rm f(x)=\tan^{-1}\left(\frac{1-cos\theta}{sin\theta}\right)\)

\(\rm f(x)=\tan^{-1}\left(\frac{sin^2\frac{\theta}{2}}{2sin\frac{\theta}{2}cos\frac{\theta}{2}}\right)\)

\(\rm f(x)=\tan^{-1}\left(\tan\frac{\theta}{2}\right)\)

\(\rm f(x)=\frac{\theta}{2}\)

\(\rm f(x)=\frac12tan^{-1}x\)

अवकलित करने पर

\(\rm f'(x)=\frac{1}{2}\cdot\frac{1}{1+x^2}\)

हमारे पास g(x) = tan-1x है

अवकलित करने पर

\(\rm g'(x)=\frac{1}{1+x^2}\)

अब g(x) के संबंध में f(x) का अवकलज निम्न है

\(\rm \frac{f'(x)}{g'(x)}=\frac{\frac{1}{2}\cdot\frac{1}{1+x^2}}{\frac{1}{1+x^2}}=\frac{1}{2}\)

अतः विकल्प (2) सही है।

Latest AAI JE ATC Updates

Last updated on Jun 19, 2025

-> The AAI ATC Exam 2025 will be conducted on July 14, 2025 for Junior Executive.. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on April 4, 2025, along with the details of application dates, eligibility, and selection process.

-> A total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in the Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer-Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

More Evaluation of derivatives Questions

More Differential Calculus Questions

Get Free Access Now
Hot Links: teen patti sweet mpl teen patti teen patti yes teen patti pro