\(\mathop \smallint \nolimits_1^2 \frac{1}{{{{\rm{x}}^2} + {\rm{x}}}}{\rm{dx}}\) किसके बराबर है?

  1. \(\log \frac{3}{4}\)
  2. \(\log \frac{4}{3}\)
  3. \(\log \frac{1}{3}\)
  4. \(\log \frac{2}{3}\)

Answer (Detailed Solution Below)

Option 2 : \(\log \frac{4}{3}\)
Free
NDA 01/2025: English Subject Test
5.5 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

अवधारणा:

\(\smallint \frac{1}{{\rm{x}}}{\rm{dx}} = \log \left| {\rm{x}} \right| + {\rm{c}}\)

 

गणना:

I = \(\mathop \smallint \nolimits_1^2 \frac{1}{{{{\rm{x}}^2} + {\rm{x}}}}{\rm{dx}} \)

\(= {\rm{\;}}\mathop \smallint \nolimits_1^2 \frac{1}{{{\rm{x}}\left( {{\rm{x}} + 1} \right)}}{\rm{dx}} \)

\(= \mathop \smallint \nolimits_1^2 \frac{{\left( {{\rm{x}} + 1} \right) - {\rm{x}}}}{{{\rm{x}}\left( {{\rm{x}} + 1} \right)}}{\rm{dx}} \)

\(= \mathop \smallint \nolimits_1^2 \left[ {\frac{{\left( {{\rm{x}} + 1} \right)}}{{{\rm{x}}\left( {{\rm{x}} + 1} \right)}} - \frac{{\rm{x}}}{{{\rm{x}}\left( {{\rm{x}} + 1} \right)}}} \right]{\rm{dx}} \)

\(= {\rm{\;}}\mathop \smallint \nolimits_1^2 \left[ {\frac{1}{{\rm{x}}} - \frac{1}{{{\rm{x}} + 1}}} \right]{\rm{dx}}\)

\( = {\rm{\;}}\left[ {\log x - \log \left( {x + 1} \right)} \right]_1^2\)

= (log 2 – log 3) – (log 1 – log 2)

= log 2 – log 3 – 0 + log 2

= 2 log 2 – log 3

= log 22 – log 3                       

(∵ n log m = log mn)

= log 4 – log 3                          

\( = \log \frac{4}{3}\)    

(∵ log m - log n = log (m/n)

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Definite Integrals Questions

Get Free Access Now
Hot Links: teen patti master downloadable content lotus teen patti teen patti gold download apk teen patti master official teen patti all