Question
Download Solution PDFमान लीजिए f : R → R, \(\rm f(x)=\left\{\begin{matrix} \rm x+2 &\rm if\ x<0 \\ \rm |x-2| &\rm if \ x\geq0 \end{matrix}\right.\) द्वारा परिभाषित है। तो \(\rm \int_{-2}^{\ \ 3} f(x)\ dx\) ज्ञात कीजिए।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
- निश्चित समाकल: यदि ∫ f(x)dx = g(x) + C है, तो \(\rm \int_a^b f(x)\ dx = [g(x)]_a^b\) = g(b) - g(a) है।
- यदि a ≤ c ≤ b है, तो \(\rm \int_a^b f(x)\ dx = \int_a^c f(x)\ dx+\int_c^b f(x)\ dx\) है।
- \(\rm \int x^n\ dx = \frac{x^{n+1}}{n+1}+C\).
गणना:
दिए गए फलन को निम्न रूप में संक्षेपित किया जा सकता है:
x | x < 0 | 0 ≤ x < 2 | 2 ≤ x |
f(x) | x + 2 | 2 - x | x - 2 |
चूँकि दिया गया फलन बहु-मान वाले फलन हैं, इसलिए, दिए गए निश्चित समाकल को भागों में अलग करते हैं, जहाँ फलन के समीकरण अलग हैं:
\(\rm \int_{-2}^{\ \ 3} f(x)\ dx=\int_{-2}^{\ \ 0} f(x)\ dx+\int_{0}^{2} f(x)\ dx+\int_{2}^{3} f(x)\ dx\)
= \(\rm \int_{-2}^{\ \ 0} (x+2)\ dx+\int_{0}^{2}(2-x)\ dx+\int_{2}^{3}(x-2)\ dx\)
= \(\rm \left[\frac{x^2}{2}+2x\right]_{-2}^{\ \ \ 0}+\left[2x-\frac{x^2}{2}\right]_{0}^{2}+\left[\frac{x^2}{2}-2x\right]_{2}^{3}\)
= \(\rm [0-(2-4)]+[4-2-0)]+\left[\frac{9}{2}-6-(2-4)\right]\)
= \(\rm 2+2+\frac{9}{2}-4\)
= 4.5
Last updated on Jun 12, 2025
->The NIMCET 2025 provisional answer key is out now. Candidates can log in to the official website to check their responses and submit objections, if any till June 13, 2025.
-> NIMCET exam was conducted on June 8, 2025.
-> NIMCET 2025 admit card was out on June 3, 2025.
-> NIMCET 2025 results will be declared on June 27, 2025. Candidates are advised to keep their login details ready to check their scrores as soon as the result is out.
-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.