Evaluate using Integration by Parts MCQ Quiz in मराठी - Objective Question with Answer for Evaluate using Integration by Parts - मोफत PDF डाउनलोड करा

Last updated on Mar 15, 2025

पाईये Evaluate using Integration by Parts उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Evaluate using Integration by Parts एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Evaluate using Integration by Parts MCQ Objective Questions

Top Evaluate using Integration by Parts MCQ Objective Questions

Evaluate using Integration by Parts Question 1:

\(\rm \int^{\frac{\pi}{2}}_0x^3 \ sin\ x \ dx=\)

  1. \(\frac{3\pi^2}{4}-3\pi+6\)
  2. \(\frac{3\pi^2}{4}+3\pi-6\)
  3. \(\frac{3\pi^2}{4}+6\)
  4. \(\frac{3\pi^2}{4}-6\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{3\pi^2}{4}-6\)

Evaluate using Integration by Parts Question 1 Detailed Solution

Explanation:

Concept: Integration by part

If f and g are two functions, then ∫fg = f∫g - ∫{f'∫g}

If ∫ f(x)dx = F(x), then \(\int_{a}^{b}\)f(x) = F(b)-F(a)

Let \(I=\int_{0}^{π/2}{x^3\sin x}dx\)

We have f = x3 and g = sinx

∴ \(I=x^3\int{\sin x}dx-\int({3x^2\int{\sin x}}dx)dx\)

⇒ \(I=-x^3{\cos x}-\int{-3x^2{\cos x}}dx\)

\(⇒ I=-x^3{\cos x}+3\int{x^2{\cos x}}dx\)

\(⇒ I=-x^3{\cos x}+3\Big[x^2{\sin x}-\int{2x{\sin x}}dx\Big]\)

\(⇒ I=-x^3{\cos x}+3x^2{\sin x}-6\int{x{\sin x}}dx\)

\(⇒ I=-x^3{\cos x}+3x^2{\sin x}-6\Big[-x{\cos x}-\int{-{\cos x}}dx\Big]\)

\(⇒ I=-x^3{\cos x}+3x^2{\sin x}+6x{\cos x}-6\int{{\cos x}}dx\)

\(⇒ I=-x^3{\cos x}+3x^2{\sin x}+6x{\cos x}-6{\sin x}+C\)

\(⇒ I=(3x^2-6){\sin x}+(6x-x^3){\cos x}+C\)

On applying limits of integration,

∴ I = (3(π /2)- 6)
⇒ \(I=\frac{3\pi^2}{4}-6\)

Evaluate using Integration by Parts Question 2:

Let \(I_n=\int^e_1x^{19}(\log|x|)^n dx\), where n ∈ N. If (20)I10 = αI9 + βI8, for natural numbers α and β, then α - β equals to _________.

Answer (Detailed Solution Below) 1

Evaluate using Integration by Parts Question 2 Detailed Solution

Concept:

Integration By Parts of Definite Integrals formula: \(\int_{a}^{b}uvdx=u\int_{a}^{b}vdx-\int_{a}^{b}(u' \int vdx)dx\)

Calculation:

Given:

\(I_n=\int^e_1x^{19}(\log|x|)^n dx\)

Here, u=\((\log|x|)^n \) , v = \(x^{19}\)

So apply by Parts:

\(=(\log|x|)^n \int_{1}^{e}x^{19}dx-\int_{1}^{e}(n\frac{(\log|x|)^{n-1}}{x} \int x^{19}dx)dx\) --------(Since u' = \(n\frac{(\log|x|)^{n-1}}{x}\))

\(=(\log|x|)^n \int_{1}^{e}x^{19}dx-\int_{1}^{e}(n\frac{(\log|x|)^{n-1}}{20x} x^{20})dx\) -------( Since \( \int x^{19}dx = x^{20}/20\))

Put the limits we get,

\(I_n = \frac{e^{20}}{20}-\frac{n}{20}(I_{n-1})\)

\(20I_n = {e^{20}}-{n}(I_{n-1})\)

Now,

\(20I_{10} = {e^{20}}-{n}(I_{9})\) ---(1)

\(20I_{9} = {e^{20}}-{n}(I_{8})\) ----(2)

Subtract (1) from (2)

(20)I10 = 10I9 + 9I8

Comparing with (20)I10 = αI9 + βI8

we get

α = 10 and β = 9

So  α - β = 1

Get Free Access Now
Hot Links: teen patti master 2024 teen patti pro teen patti real cash 2024 teen patti lucky