Evaluate using Integration by Parts MCQ Quiz in मल्याळम - Objective Question with Answer for Evaluate using Integration by Parts - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 14, 2025

നേടുക Evaluate using Integration by Parts ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Evaluate using Integration by Parts MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Evaluate using Integration by Parts MCQ Objective Questions

Top Evaluate using Integration by Parts MCQ Objective Questions

Evaluate using Integration by Parts Question 1:

\(\rm \int^{\frac{\pi}{2}}_0x^3 \ sin\ x \ dx=\)

  1. \(\frac{3\pi^2}{4}-3\pi+6\)
  2. \(\frac{3\pi^2}{4}+3\pi-6\)
  3. \(\frac{3\pi^2}{4}+6\)
  4. \(\frac{3\pi^2}{4}-6\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{3\pi^2}{4}-6\)

Evaluate using Integration by Parts Question 1 Detailed Solution

Explanation:

Concept: Integration by part

If f and g are two functions, then ∫fg = f∫g - ∫{f'∫g}

If ∫ f(x)dx = F(x), then \(\int_{a}^{b}\)f(x) = F(b)-F(a)

Let \(I=\int_{0}^{π/2}{x^3\sin x}dx\)

We have f = x3 and g = sinx

∴ \(I=x^3\int{\sin x}dx-\int({3x^2\int{\sin x}}dx)dx\)

⇒ \(I=-x^3{\cos x}-\int{-3x^2{\cos x}}dx\)

\(⇒ I=-x^3{\cos x}+3\int{x^2{\cos x}}dx\)

\(⇒ I=-x^3{\cos x}+3\Big[x^2{\sin x}-\int{2x{\sin x}}dx\Big]\)

\(⇒ I=-x^3{\cos x}+3x^2{\sin x}-6\int{x{\sin x}}dx\)

\(⇒ I=-x^3{\cos x}+3x^2{\sin x}-6\Big[-x{\cos x}-\int{-{\cos x}}dx\Big]\)

\(⇒ I=-x^3{\cos x}+3x^2{\sin x}+6x{\cos x}-6\int{{\cos x}}dx\)

\(⇒ I=-x^3{\cos x}+3x^2{\sin x}+6x{\cos x}-6{\sin x}+C\)

\(⇒ I=(3x^2-6){\sin x}+(6x-x^3){\cos x}+C\)

On applying limits of integration,

∴ I = (3(π /2)- 6)
⇒ \(I=\frac{3\pi^2}{4}-6\)

Evaluate using Integration by Parts Question 2:

Let \(I_n=\int^e_1x^{19}(\log|x|)^n dx\), where n ∈ N. If (20)I10 = αI9 + βI8, for natural numbers α and β, then α - β equals to _________.

Answer (Detailed Solution Below) 1

Evaluate using Integration by Parts Question 2 Detailed Solution

Concept:

Integration By Parts of Definite Integrals formula: \(\int_{a}^{b}uvdx=u\int_{a}^{b}vdx-\int_{a}^{b}(u' \int vdx)dx\)

Calculation:

Given:

\(I_n=\int^e_1x^{19}(\log|x|)^n dx\)

Here, u=\((\log|x|)^n \) , v = \(x^{19}\)

So apply by Parts:

\(=(\log|x|)^n \int_{1}^{e}x^{19}dx-\int_{1}^{e}(n\frac{(\log|x|)^{n-1}}{x} \int x^{19}dx)dx\) --------(Since u' = \(n\frac{(\log|x|)^{n-1}}{x}\))

\(=(\log|x|)^n \int_{1}^{e}x^{19}dx-\int_{1}^{e}(n\frac{(\log|x|)^{n-1}}{20x} x^{20})dx\) -------( Since \( \int x^{19}dx = x^{20}/20\))

Put the limits we get,

\(I_n = \frac{e^{20}}{20}-\frac{n}{20}(I_{n-1})\)

\(20I_n = {e^{20}}-{n}(I_{n-1})\)

Now,

\(20I_{10} = {e^{20}}-{n}(I_{9})\) ---(1)

\(20I_{9} = {e^{20}}-{n}(I_{8})\) ----(2)

Subtract (1) from (2)

(20)I10 = 10I9 + 9I8

Comparing with (20)I10 = αI9 + βI8

we get

α = 10 and β = 9

So  α - β = 1

Get Free Access Now
Hot Links: teen patti diya teen patti master 51 bonus teen patti game online teen patti gold apk download