Evaluate using Integration by Parts MCQ Quiz in मल्याळम - Objective Question with Answer for Evaluate using Integration by Parts - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 14, 2025
Latest Evaluate using Integration by Parts MCQ Objective Questions
Top Evaluate using Integration by Parts MCQ Objective Questions
Evaluate using Integration by Parts Question 1:
\(\rm \int^{\frac{\pi}{2}}_0x^3 \ sin\ x \ dx=\)
Answer (Detailed Solution Below)
Evaluate using Integration by Parts Question 1 Detailed Solution
Explanation:
Concept: Integration by part
If f and g are two functions, then ∫fg = f∫g - ∫{f'∫g}
If ∫ f(x)dx = F(x), then \(\int_{a}^{b}\)f(x) = F(b)-F(a)
Let \(I=\int_{0}^{π/2}{x^3\sin x}dx\)
We have f = x3 and g = sinx
∴ \(I=x^3\int{\sin x}dx-\int({3x^2\int{\sin x}}dx)dx\)
⇒ \(I=-x^3{\cos x}-\int{-3x^2{\cos x}}dx\)
\(⇒ I=-x^3{\cos x}+3\int{x^2{\cos x}}dx\)
\(⇒ I=-x^3{\cos x}+3\Big[x^2{\sin x}-\int{2x{\sin x}}dx\Big]\)
\(⇒ I=-x^3{\cos x}+3x^2{\sin x}-6\int{x{\sin x}}dx\)
\(⇒ I=-x^3{\cos x}+3x^2{\sin x}-6\Big[-x{\cos x}-\int{-{\cos x}}dx\Big]\)
\(⇒ I=-x^3{\cos x}+3x^2{\sin x}+6x{\cos x}-6\int{{\cos x}}dx\)
\(⇒ I=-x^3{\cos x}+3x^2{\sin x}+6x{\cos x}-6{\sin x}+C\)
\(⇒ I=(3x^2-6){\sin x}+(6x-x^3){\cos x}+C\)
On applying limits of integration,
∴ I = (3(π /2)2 - 6)
⇒ \(I=\frac{3\pi^2}{4}-6\)
Evaluate using Integration by Parts Question 2:
Let \(I_n=\int^e_1x^{19}(\log|x|)^n dx\), where n ∈ N. If (20)I10 = αI9 + βI8, for natural numbers α and β, then α - β equals to _________.
Answer (Detailed Solution Below) 1
Evaluate using Integration by Parts Question 2 Detailed Solution
Concept:
Integration By Parts of Definite Integrals formula: \(\int_{a}^{b}uvdx=u\int_{a}^{b}vdx-\int_{a}^{b}(u' \int vdx)dx\)
Calculation:
Given:
\(I_n=\int^e_1x^{19}(\log|x|)^n dx\)
Here, u=\((\log|x|)^n \) , v = \(x^{19}\)
So apply by Parts:
\(=(\log|x|)^n \int_{1}^{e}x^{19}dx-\int_{1}^{e}(n\frac{(\log|x|)^{n-1}}{x} \int x^{19}dx)dx\) --------(Since u' = \(n\frac{(\log|x|)^{n-1}}{x}\))
\(=(\log|x|)^n \int_{1}^{e}x^{19}dx-\int_{1}^{e}(n\frac{(\log|x|)^{n-1}}{20x} x^{20})dx\) -------( Since \( \int x^{19}dx = x^{20}/20\))
Put the limits we get,
\(I_n = \frac{e^{20}}{20}-\frac{n}{20}(I_{n-1})\)
\(20I_n = {e^{20}}-{n}(I_{n-1})\)
Now,
\(20I_{10} = {e^{20}}-{n}(I_{9})\) ---(1)
\(20I_{9} = {e^{20}}-{n}(I_{8})\) ----(2)
Subtract (1) from (2)
(20)I10 = 10I9 + 9I8
Comparing with (20)I10 = αI9 + βI8
we get
α = 10 and β = 9
So α - β = 1