ईष्टिकाचिति MCQ Quiz in मराठी - Objective Question with Answer for Cuboid - मोफत PDF डाउनलोड करा

Last updated on Jun 5, 2025

पाईये ईष्टिकाचिति उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा ईष्टिकाचिति एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Cuboid MCQ Objective Questions

ईष्टिकाचिति Question 1:

6 मीटर लांब आणि 4 मीटर रुंद असलेल्या एका टाकीत 1 मीटर 25 सेंटीमीटर खोलीपर्यंत पाणी आहे. भिजलेल्या पृष्ठभागाचे एकूण क्षेत्रफळ काढा:

  1. 50 मीटर2
  2. 49 मीटर2
  3. 53.5 मीटर2
  4. 55 मीटर2

Answer (Detailed Solution Below)

Option 1 : 50 मीटर2

Cuboid Question 1 Detailed Solution

दिलेले आहे:

टाकीची लांबी = 6 मीटर

टाकीची रुंदी = 4 मीटर

पाण्याची खोली = 1.25 मीटर

वापरलेले सूत्र:

भिजलेल्या पृष्ठभागाचे एकूण क्षेत्रफळ = तळाचे क्षेत्रफळ + 4 भिंतींचे क्षेत्रफळ

गणना:

तळाचे क्षेत्रफळ = लांबी × रुंदी

तळाचे क्षेत्रफळ = 6 मी × 4 मी

तळाचे क्षेत्रफळ = 24 मी2

पाण्याची उंची = 1.25 मी

4 भिंतींचे क्षेत्रफळ = 2(लांबी × उंची) + 2(रुंदी × उंची)

4 भिंतींचे क्षेत्रफळ = 2(6 मी × 1.25 मी) + 2(4 मी × 1.25 मी)

4 भिंतींचे क्षेत्रफळ = 2(7.5 मी2) + 2(5 मी2)

4 भिंतींचे क्षेत्रफळ = 15 मी2 + 10 मी2

4 भिंतींचे क्षेत्रफळ = 25 मी2

भिजलेल्या पृष्ठभागाचे एकूण क्षेत्रफळ = तळाचे क्षेत्रफळ + 4 भिंतींचे क्षेत्रफळ

भिजलेल्या पृष्ठभागाचे एकूण क्षेत्रफळ = 24 मी2 + 25 मी2

भिजलेल्या पृष्ठभागाचे एकूण क्षेत्रफळ = 49 मी2

भिजलेल्या पृष्ठभागाचे एकूण क्षेत्रफळ 49 मीटर2 आहे.

ईष्टिकाचिति Question 2:

एका धार्मिक दिवशी 50 पुरुषांनी 40 मीटर लांब आणि 20 मीटर रुंद पाण्याच्या टाकीत स्नान केले. जर एका पुरुषाने सरासरी 4 मीटर3 पाणी विस्थापित केले असेल, तर टाकीतील पाण्याच्या पातळीत होणारी वाढ असेल:

  1. 25 सेमी
  2. 20 सेमी
  3. 50 सेमी
  4. 35 सेमी

Answer (Detailed Solution Below)

Option 1 : 25 सेमी

Cuboid Question 2 Detailed Solution

दिलेले आहे:

पुरुषांची संख्या = 50

टाकीची लांबी (L) = 40 मी

टाकीची रुंदी (B) = 20 मी

एका पुरुषाने सरासरी विस्थापित केलेले पाण्याचे प्रमाण = 4 मीटर3

वापरलेले सूत्र:

50 पुरुषांनी विस्थापित केलेले एकूण प्रमाण = टाकीचे घनफळ × पाण्याच्या पातळीतील वाढ

टाकीचे घनफळ = लांबी × रुंदी × उंची

गणना:

50 पुरुषांनी विस्थापित केलेले एकूण प्रमाण = 50 × 4 = 200 मीटर3

टाकीचे घनफळ = L × B × H

⇒ 200 = 40 × 20 × H

⇒ 200 = 800H

⇒ H = 200/800

⇒ H = 0.25 मी = 25 सेमी

∴ पर्याय 1 योग्य आहे.

ईष्टिकाचिति Question 3:

एक इष्टिकाचितीच्या तीन संलग्न पृष्ठफळे 66 सेमी2, 192 सेमी2 आणि 198 सेमी2 आहेत. तर त्या इष्टिकाचितीचे घनफळ (सेमी3 मध्ये) किती?

  1. 1792
  2. 1594
  3. 1782
  4. 1584

Answer (Detailed Solution Below)

Option 4 : 1584

Cuboid Question 3 Detailed Solution

दिलेले आहे:

एक इष्टिकाचितीच्या तीन संलग्न पृष्ठांची क्षेत्रफळे 66 सेमी2, 192 सेमी2 आणि 198 सेमी2 आहेत.

वापरलेले सूत्र:

इष्टिकाचितीचे घनफळ, V = l × b × h

दिलेली पृष्ठफळे: l × b, b × h, h × l

आपण हे सूत्र वापरू शकतो: l × b × h = √((l × b) × (b × h) × (h × l))

गणना:

समजा, l × b = 66

समजा, b × h = 192

समजा, h × l = 198

घनफळ, V = √((66 × 192 × 198))

V = √(2509056)

V = 1584 सेमी3

∴ इष्टिकाचितीचे घनफळ 1584 सेमी3 आहे.

ईष्टिकाचिति Question 4:

एक इष्टिकाचितीय खोलीची लांबी 15 मीटर, रुंदी 17 मीटर आणि उंची 21 मीटर आहे. तिच्या भिंती आणि छताला 42 रुपये/मीटर2 दराने रंग देण्यास किती खर्च येईल ते काढा.

  1. 65,128 रुपये
  2. 68,918 रुपये
  3. 64,258 रुपये
  4. 67,158 रुपये

Answer (Detailed Solution Below)

Option 4 : 67,158 रुपये

Cuboid Question 4 Detailed Solution

दिलेले आहे:

लांबी (l) = 15 मीटर

रुंदी (b) = 17 मीटर

उंची (h) = 21 मीटर

रंगकामाचा दर = 42 रुपये/मीटर2

वापरलेले सूत्र:

भिंतीचे क्षेत्रफळ = 2h(l + b)

छताचे क्षेत्रफळ = l × b

एकूण खर्च = एकूण क्षेत्रफळ × दर

गणना:

भिंतीचे क्षेत्रफळ = 2 × 21 × (15 + 17)

⇒ भिंतीचे क्षेत्रफळ = 42 × 32

⇒ भिंतीचे क्षेत्रफळ = 1344 मीटर2

छताचे क्षेत्रफळ = 15 × 17

⇒ छताचे क्षेत्रफळ = 255 मीटर2

रंगवायचे एकूण क्षेत्रफळ = 1344 + 255

⇒ रंगवायचे एकूण क्षेत्रफळ = 1599 मीटर2

एकूण खर्च = 1599 × 42

⇒ एकूण खर्च = 67,158 रुपये

∴ पर्याय (4) योग्य आहे.

ईष्टिकाचिति Question 5:

एका कार्यालयाच्या मजल्याचे माप 5 मी × 3 मी आहे. भिंती रंगविण्याचा खर्च 60 रुपये/मी2 दराने 8,640 रुपये आहे. तर खोलीची उंची (मीटर मध्ये) शोधा.

  1. 8.5
  2. 8
  3. 9
  4. 9.5

Answer (Detailed Solution Below)

Option 3 : 9

Cuboid Question 5 Detailed Solution

दिलेले आहे:

मजल्याचे माप: 5 मी × 3 मी

रंगविण्याचा खर्च = 8,640 रुपये

रंगविण्याचा दर = 60 रुपये/मी2

वापरलेले सूत्र:

चार भिंतीचे क्षेत्रफळ = 2 × (l + b) × h

येथे, l = लांबी, b = रुंदी, h = उंची

गणना:

रंगविलेल्या भिंतीचे क्षेत्रफळ:

क्षेत्रफळ = रंगविण्याचा खर्च / रंगविण्याचा दर

⇒ क्षेत्रफळ = 8640 / 60 = 144 मी2

खोलीची उंची:

चार भिंतीचे क्षेत्रफळ = 2 × (l + b) × h

⇒ 144 = 2 × (5 + 3) × h

⇒ 144 = 2 × 8 × h

⇒ 144 = 16 × h

⇒ h = 144 / 16 = 9 मी

∴ खोलीची उंची 9 मीटर आहे.

Top Cuboid MCQ Objective Questions

एक शिरोबिंदू सामायिक असलेल्या ईष्टिकाचितीच्या तीन बाजूंचे पृष्ठफळ 20 मी2, 32 मी2 आणि 40 मी2 आहे. तर ईष्टिकाचितीचे घनफळ किती आहे?

  1. 92 मी3
  2. √3024 मी3
  3. 160 मी3
  4. 184 मी3

Answer (Detailed Solution Below)

Option 3 : 160 मी3

Cuboid Question 6 Detailed Solution

Download Solution PDF

एक शिरोबिंदू सामायिक असलेल्या ईष्टिकाचितीच्या तीन बाजूंचे पृष्ठफळ 20 मी2, 32 मी2 आणि 40 मी2 आहे,

⇒ L × B = 20 मी2

⇒ B × H = 32 मी2

⇒ L × H = 40 मी2

⇒ L × B × B × H × L × H = 20 × 32 × 40

⇒ L2B2H2 = 25600

⇒ LBH = 160

∴ घनफळ = LBH = 160 मी3

घनदाटाची लांबी, रुंदी आणि उंचीची बेरीज 21 सेमी आहे आणि त्याच्या कर्णाची लांबी 13 सेमी आहे. मग घनदाटाचे एकूण पृष्ठभाग क्षेत्रफळ किती आहे?

  1. 272 सेमी2
  2. 240 सेमी2
  3. 314 सेमी2
  4. 366 सेमी2

Answer (Detailed Solution Below)

Option 1 : 272 सेमी2

Cuboid Question 7 Detailed Solution

Download Solution PDF

दिलेल्याप्रमाणे:

घनदाटाची लांबी, रुंदी आणि उंचीची बेरीज = 21 सेमी

कर्णाची लांबी(d) = 13 सेमी

वापरलेले सूत्र:

d2 = l2 + b2 + h2

घनाकृतीचा TSA = 2(lb + hb +lh)

गणना:

⇒ l2 + b2 + h2 = 132 = 169

प्रश्नानुसार,

⇒ (l + b + h)2 = 441

⇒ l2 + b2 + h2 + 2(lb + hb +lh) = 441

⇒ 2(lb + hb +lh) = 441 - 169 = 272

∴ उत्तर 272 सेमी2 आहे.

पुस्तकांचा संच पॅक करण्यासाठी, गौतमला 48 इंच लांब आणि 27 इंच रुंद एका विशिष्ट उंचीचे कार्टन्स मिळाले. जर अशा कार्टनचे घनफळ 22.5 घनफूट असेल, तर प्रत्येक कार्टनची उंची किती असेल? [1 फूट = 12 इंच वापरा.]

  1. 36 इंच
  2. 32.5 इंच
  3. 30 इंच
  4. 32 इंच

Answer (Detailed Solution Below)

Option 3 : 30 इंच

Cuboid Question 8 Detailed Solution

Download Solution PDF

दिलेल्याप्रमाणे:

कार्टनची लांबी = 48 इंच आणि रुंदी = 27 इंच 

कार्टनचे घनफळ = 22.5 घनफूट.

वापरलेले सूत्र:

इष्टिकाचितीचे घनफळ = लांबी × रुंदी × उंची

गणना:

कार्टनचे घनफळ = इष्टिकाचितीचे घनफळ = लांबी × रुंदी × उंची

कार्टनचे घनफळ = 48 × 27 × उंची

∵ 1 फूट = 12 इंच, तर 22.5 घनफूट = 22.5 × 12 × 12 × 12

⇒ 22.5 × 12 × 12 × 12 = 48 × 27 × उंची

⇒ 38,880 = 1,296 × उंची

⇒ उंची = 30 इंच.

∴ प्रत्येक कार्टनची उंची 30 इंच आहे.

4000 लोकसंख्या असलेल्या काझीपेठमध्ये दररोज 9 लीटर पाणी लागते. तेथे 15 मीटर × 8 मीटर × 6 मीटर घनफळाची घनाभरूप टाकी आहे. टाकी पाण्याने भरलेली असेल तर या टाकीचे पाणी किती दिवस पुरेल?

  1. 25 दिवस
  2. 30 दिवस
  3. 10 दिवस
  4. 20 दिवस

Answer (Detailed Solution Below)

Option 4 : 20 दिवस

Cuboid Question 9 Detailed Solution

Download Solution PDF

⇒ काझीपेठमधील एकूण पाण्याचा 1 दिवसाचा वापर = 4000 × 9 = 36000 लीटर

⇒ घनाभरूप टाकीची मात्रा = 720 m3 = 720 × 1000 लिटर = 720000 लीटर

∴ पाणी उपलब्ध असलेल्या दिवसांची संख्या = 720000/36000 = 20 दिवस

18 मीटर लांब, 10 मीटर उंच आणि 40 सेमी रुंद भिंत 30 सेमी, 15 सेमी आणि 10 सेमी आकारमानाच्या विटा वापरून बांधायची आहे. किती विटा (हजारोमध्ये) आवश्यक आहेत?

  1. 16000
  2. 16
  3. 14
  4. 14000

Answer (Detailed Solution Below)

Option 2 : 16

Cuboid Question 10 Detailed Solution

Download Solution PDF

Confusion Points
1. आपणास प्रश्न काळजीपूर्वक वाचावा लागेल...
2. या प्रश्नामध्ये रकमेचे एकक (हजारो) आधीच नमूद केले आहे. प्रश्नाचे उत्तर केवळ रकमेच्या संख्येत द्यायचे आहे. म्हणून उत्तर 16 आणि 16000 नाही.

टीप - हा SSC चा अधिकृत प्रश्न आहे आणि SSC चा विचार करा 16 हे योग्य उत्तर आहे.
दिलेल्याप्रमाणे:

भिंतीचे परिमाण = 18 मीट x 10 मीटर x 40 सेमी

विटांचे परिमाण = 30 सेमी x 15 सेमी x 10 सेमी

वापरलेली संकल्पना:

घनाचे घनफळ = लांबी x रुंदी x उंची

भिंतीचे घनफळ आवश्यक एकूण विटांच्या घनफळाच्या समान असावी.

गणना:

18 मीट = 1800 सेमी

10 मीट = 1000 सेमी

भिंतीचे घनफळ = (1800 x 1000 x 40) घन सेमी

प्रत्येक विटेचा आकार = (30 x 15 x 10) घन सेमी 

आता, आवश्यक विटांची संख्या = (1800 × 1000 × 40) ÷ (30 × 15 × 10)

⇒ 16000

∴ आवश्यक विटांची संख्या 16 हजार आहे.

Confusion Points
1. आपणास प्रश्न काळजीपूर्वक वाचावा लागेल...
2. या प्रश्नामध्ये रकमेचे एकक (हजारो) आधीच नमूद केले आहे. प्रश्नाचे उत्तर केवळ रकमेच्या संख्येत द्यायचे आहे. म्हणून उत्तर 16 आणि 16000 नाही.

इष्टीकचितीच्या समान शिरोबिंदू असलेल्या तीन बाजूंच्या पृष्ठभागाचे क्षेत्रफळ 25 चौरस मीटर, 32 चौरस मीटर आणि 32 चौरस मीटर आहे. इष्टीकचितीचे घनफळ किती आहे?

  1. 160 घन मीटर
  2. 92 घन मीटर
  3. 184 मीटर3
  4. √3024 घन मीटर

Answer (Detailed Solution Below)

Option 1 : 160 घन मीटर

Cuboid Question 11 Detailed Solution

Download Solution PDF

दिलेल्याप्रमाणे:

तीन बाजूंच्या पृष्ठभागाचे क्षेत्रफळ = 25 चौरस मीटर, 32 चौरस मीटर आणि 32 चौरस मीटर

वापरलेली संकल्पना:

एका बाजूच्या पृष्ठभागाचे क्षेत्रफळ

1.) लांबी × रुंदी

2.) रुंदी × उंची

3.) उंची × लांबी

इष्टीकचितीचे घनफळ = लांबी × रुंदी × उंची

गणना:

आपल्याकडे आहे,

⇒ लांबी × रुंदी = 25 चौरस मीटर

⇒ रुंदी × उंची = 32 चौरस मीटर

⇒ उंची × लांबी = 32 चौरस मीटर

वरील तीन समीकरणांचा गुणाकार केल्यास, आपणास हे मिळते,

⇒ (लांबी × रुंदी × उंची)2 = 25 × 32 × 32

दोन्ही बाजूंना वर्गमूळ लागू केल्यास,

⇒ (लांबी × रुंदी × उंची) = 5 × 32

⇒ लांबी × रुंदी × उंची = 160

इष्टीकचितीचे घनफळ = 160 घन मीटर

इष्टीकचितीचे घनफळ 160 घन मीटर आहे

1 सेमी जाड लाकडापासून बनविलेले बंद लाकडी आयताकृती खोक्याची बाह्य परिमाणे पुढीलप्रमाणे आहेत: लांबी 22 सेमी, रुंदी 17 सेमी आणि उंची 12 सेमी. तो सिमेंटने भरलेला आहे. खोक्यामध्ये सिमेंटचे प्रमाण किती आहे?

A. 1488 चौ. सेमी

B. 3000 चौ. सेमी

C. 4488 चौ. सेमी

D. 2880 चौ. सेमी

  1. D
  2. C
  3. A
  4. B

Answer (Detailed Solution Below)

Option 4 : B

Cuboid Question 12 Detailed Solution

Download Solution PDF

दिल्याप्रमाणे:

लाकडाची जाडी = 1 सेमी

खोक्याची लांबी = 22 सेमी

खोक्याची रुंदी = 17 सेमी

खोक्याची उंची = 12 सेमी

गणना

खोक्याची अंतर्गत लांबी = (22 - 2) = 20 सेमी

खोक्याची अंतर्गत रुंदी = (17 - 2) = 15 सेमी

खोक्याची अंतर्गत उंची = (12 - 2) = 10 सेमी

खोक्याचे अंतर्गत आकारमान = (20 × 15 × 10) = 3000 चौ. सेमी

∴ खोक्यामधील सिमेंटचे आकारमान 3000 घन.सेमी आहे.

एका घनकारी बॉक्सची लांबी त्याच्या रूंदीच्या 4/3 पट असते आणि उंची त्याच्या लांबीच्या अर्धी आहे. जर बॉक्सचे घनफळ 1536 सेमी3 असेल तर बॉक्सची लांबी किती असेल?

  1. 10 सेमी
  2. 16 सेमी
  3. 18 सेमी
  4. 12 सेमी

Answer (Detailed Solution Below)

Option 2 : 16 सेमी

Cuboid Question 13 Detailed Solution

Download Solution PDF

वापरलेली संकल्पनाः

आयताकृती बॉक्सचे घनफळ =लांबी × रुंदी × उंची

गणना:

समजा बॉक्सची लांबी 4x असेल तर त्याची रूंदी 3x आणि उंची 2x असेल.

आता, आकारमान  = 4x × 3x × 2x = 24x3

⇒ 24x3 = 1536

⇒ x3 = 64

⇒ x = 4

∴ बॉक्सची लांबी 4x = 16 सेमी.

∴ बॉक्सची लांबी 16 सेमी आहे.

 

बॉक्सची रुंदी x मानुया.

(4x/3) × x × (4x/6) =1536

⇒ 16x3/18 = 1536

⇒ x3 = 1536 × 18/16

⇒ x3 = 1728

⇒ x = 12

लांबी = 4x/3

⇒ 4 × 12/3

⇒ 16

∴ बॉक्सची लांबी 16 सेमी आहे.

प्रत्येकी 7 सेमी बाजूच्या चौकोनी पत्र्याच्या प्रत्येक कोपऱ्यातून 0.25 चौरस सेमी क्षेत्रफळाचे चौरस कापले जातात आणि उर्वरित पत्रा कापलेल्या बाजूने दुमडून घन बनतो. या खुल्या ऊर्ध्व घनाचे घनफळ____ सेमी3 असेल.

  1. 21
  2. 16
  3. 18
  4. 20

Answer (Detailed Solution Below)

Option 3 : 18

Cuboid Question 14 Detailed Solution

Download Solution PDF

F1 Gayathry Mohan 2-4-2021 Swati D1

चौरसाची बाजू = 7 सेमी

पत्र्यामधून कापलेल्या प्रत्येक लहान चौरसाचे क्षेत्रफळ = 0.25

पत्र्यामधून कापलेल्या प्रत्येक लहान चौरसाची बाजू = √0.25 = √(0.5 × 0.5) = 0.5 सेमी

जर उरलेला पत्रा कापलेल्या बाजूने दुमडला तर घन तयार होईल

घनाची लांबी = 6 सेमी

घनाची रुंदी = 6 सेमी

घनाची उंची = 0.5 सेमी

आपल्याला माहीत आहे की, घनाचे घनफळ = लांबी × रुंदी × उंची 

घनाचे घनफळ = 6 × 6 × 0.5 = 18 सेमी3

इष्टिकाचितीचे घनफळ 3600 घन सेमी आहे. दोन समीप बाजूचे क्षेत्रफळ 225 चौरस सेमी आणि 144 चौरस सेमी आहे. दुसऱ्या शेजारील बाजूचे क्षेत्रफळ किती आहे?

  1. 400 चौरस सेमी
  2. 360 चौरस सेमी
  3. 320 चौरस सेमी
  4. 300 चौरस सेमी

Answer (Detailed Solution Below)

Option 1 : 400 चौरस सेमी

Cuboid Question 15 Detailed Solution

Download Solution PDF

वापरलेले सूत्र:

इष्टिकाचितीचे घनफळ = लांबी × रुंदी × उंची

गणना:

l, b आणि h हे इष्टिकाचितीची लांबी, रुंदी आणि उंची आहे, असे मानूया.

इष्टिकाचितीचे घनफळ

l × b × h = 3600         -----(1)

दोन समीप बाजूंचे क्षेत्रफळ l × h आणि b × h आहे, असे मानूया. 

प्रश्नानुसार,

l × h  = 225

समीकरण (1) वरुन

b × 225 = 3600

⇒ b = 16

पुन्हा,  

b × h = 144

समीकरण (1) वरुन

l × 144 = 3600

 l = 25

दुसऱ्या समीप बाजूचे क्षेत्रफळ

l × b = 25 × 16 = 400 

∴ इतर समीप बाजूचे क्षेत्रफळ 400 cm2 आहे.

Get Free Access Now
Hot Links: teen patti bliss teen patti casino download master teen patti teen patti dhani