Identities MCQ Quiz - Objective Question with Answer for Identities - Download Free PDF

Last updated on Jun 3, 2025

Solving Identities Question Answers will help you learn and prepare for this section of any exam. The detailed solutions provided will enable you to check and analyse your answers. Once you attempt this list of Identities MCQ Quiz, you can consider yourself exam ready to solve any and all kinds of questions from this section. Start practising the Identities Objective Questions today and learn tricks and shortcuts to approach questions while solving them in lesser duration.

Latest Identities MCQ Objective Questions

Identities Question 1:

If \(\rm x+\frac{1}{x}=\sqrt7\), then the value of \(\rm x^3+\frac{1}{x^3}\) is:

  1. 4√7
  2. 3√7
  3. 5√7
  4. 2√7
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : 4√7

Identities Question 1 Detailed Solution

Given:

If x + 1/x = √7, find the value of x3 + 1/x3.

Formula used:

If x + 1/x = a, then x3 + 1/x3 = a3 - 3a.

Calculation:

Here, a = √7

⇒ x3 + 1/x3 = (√7)3 - 3(√7)

⇒ x3 + 1/x3 = (7√7) - 3√7

⇒ x3 + 1/x3 = 4√7

∴ The correct answer is option (1).

Identities Question 2:

Simplify the following expression. 

\(\rm 8\left(\frac{0.2\times 0.2\times 0.2+0.04\times 0.04\times 0.04}{0.4\times 0.4\times 0.4+0.08\times 0.08\times 0.08}\right)+9\)

  1. 8
  2. 17
  3. 10
  4. 1
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 10

Identities Question 2 Detailed Solution

Given:

\(\rm 8\left(\frac{0.2\times 0.2\times 0.2+0.04\times 0.04\times 0.04}{0.4\times 0.4\times 0.4+0.08\times 0.08\times 0.08}\right)+9\)

Formula Used:

\(\rm a^3 + b^3 = (a + b)(a^2 - ab + b^2)\)

Calculation:

Let a = 0.2 and b = 0.04

Numerator = \(\rm (0.2)^3 + (0.04)^3 = a^3 + b^3\)

Denominator terms: 0.4 = 2a, 0.08 = 2b

Denominator = \(\rm (0.4)^3 + (0.08)^3 = (2a)^3 + (2b)^3 = 8a^3 + 8b^3 = 8(a^3 + b^3)\)

Fraction = \(\rm \frac{a^3 + b^3}{8(a^3 + b^3)} = \frac{1}{8}\)

Expression = \(\rm 8 \times \frac{1}{8} + 9\)

Expression = 1 + 9

Expression = 10

∴ The simplified value of the expression is 10.

Identities Question 3:

(a + b)3 = ?

  1. a3 + b3 + ab(a + b)
  2. a3 + b3 + 3ab2
  3. a3 + b3 + 3ab(a + b)
  4. a3 + b3 + 3a2b

Answer (Detailed Solution Below)

Option 3 : a3 + b3 + 3ab(a + b)

Identities Question 3 Detailed Solution

Given:

Expression = (a + b)3

Formula Used:

Binomial expansion formula for (x + y)n

Calculations:

(a + b)3 = (a + b) × (a + b) × (a + b)

⇒ (a + b)3 = (a2 + 2ab + b2) × (a + b)

⇒ (a + b)3 = a × (a2 + 2ab + b2) + b × (a2 + 2ab + b2)

⇒ (a + b)3 = a3 + 2a2b + ab2 + a2b + 2ab2 + b3

⇒ (a + b)3 = a3 + (2a2b + a2b) + (ab2 + 2ab2) + b3

⇒ (a + b)3 = a3 + 3a2b + 3ab2 + b3

⇒ (a + b)3 = a3 + b3 + 3ab(a + b)

(a + b)3 = a3 + b3 + 3ab(a + b)

Identities Question 4:

If \(\rm x+\frac{1}{x}=15\), then the value of \(\rm \left(x^2+\frac{1}{x^2}\right)\) is:

  1. 225
  2. 223
  3. 17
  4. 13
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 223

Identities Question 4 Detailed Solution

If x + 1 / x = 15, then find the value of x2 + 1 / x2.

Solution:

Square both sides:

(x + 1 / x)2 = 152

x2 + 2 × (1 / x) × x + 1 / x2 = 225

x2 + 2 + 1 / x2 = 225

x2 + 1 / x2 = 225 - 2

x2 + 1 / x2 = 223

∴ The value of x2 + 1 / x2 is 223.

Identities Question 5:

Simplify: \(\frac{(375 \times 375)+(125 \times 125) - (375 \times 125)}{(375 \times 375 \times 375)+(125 \times 125 \times 125)}\)

  1. 1/3
  2. 1/1000
  3. 500
  4. 1/500
  5. None of the above

Answer (Detailed Solution Below)

Option 4 : 1/500

Identities Question 5 Detailed Solution

Given:

\(\frac{(375 \times 375)+(125 \times 125) - (375 \times 125)}{(375 \times 375 \times 375)+(125 \times 125 \times 125)}\)

Formula Used:

a3 + b3 = (a + b)(a2 + b2 - ab)

Solution:

1/(a + b) = (a2 + b2 - ab)/(a3 + b3)

According to the question, 

⇒ 1/(375 + 125)

⇒ 1/500

∴ The correct answer is 1/500.

Top Identities MCQ Objective Questions

If x − \(\rm\frac{1}{x}\) = 3, the value of x3 − \(\rm\frac{1}{x^3}\) is

  1. 36
  2. 63
  3. 99
  4. none of these

Answer (Detailed Solution Below)

Option 1 : 36

Identities Question 6 Detailed Solution

Download Solution PDF

Given:

x - 1/x = 3

Concept used:

a3 - b3 = (a - b)3 + 3ab(a - b)

Calculation:

x3 - 1/x3 = (x - 1/x)3 + 3 × x × 1/x × (x - 1/x)

⇒ (x - 1/x)3 + 3(x - 1/x)

⇒ (3)3 + 3 × (3)

⇒ 27 + 9 = 36

∴ The value of x3 - 1/x3 is 36.

Alternate Method If x - 1/x = a, then x3 - 1/x3 = a3 + 3a

Here a = 3

x - 1/x3 = 33 + 3 × 3

= 27 + 9

= 36

If x = √10 + 3 then find the value of \(x^3 - \frac{1}{x^3}\)

  1. 334
  2. 216
  3. 234
  4. 254

Answer (Detailed Solution Below)

Option 3 : 234

Identities Question 7 Detailed Solution

Download Solution PDF

Given:

x = √10 + 3

Formula used: 

a2 - b2 = (a + b)(a - b)

a3 - b3 = (a - b)(a2 + ab + b2)

Calculation:

\(\begin{array}{l} \frac{1}{x} = \frac{1}{{\sqrt{10}{\rm{\;}} + {\rm{\;}}3}}\\ = {\rm{\;}}\frac{{\sqrt{10} {\rm{\;}} - {\rm{\;}}3}}{{\left( {\sqrt{10} + {\rm{\;}}3} \right)\left( {\sqrt{10} {\rm{\;}} - {\rm{\;}}3} \right)}}\\ = {\rm{\;}}\frac{{\sqrt{10} {\rm{\;}} - {\rm{\;}}3 }}{{{{\left( {\sqrt{10} } \right)}^2} - {{\left( {3} \right)}^2}}} \end{array}\)

⇒ 1/x = √10 - 3

\( \Rightarrow x - \;\frac{1}{x} = \;\sqrt 10 + 3\; -\sqrt10 + 3 = 6\)     ----(1)

Squaring both side of (1),

\( \Rightarrow (x - \;\frac{1}{x})^2 = \;(6\;)^2\)

\( \Rightarrow {x^2} - 2x\frac{1}{x} + \;\frac{1}{{{x^2}}} = 36\)

\( \Rightarrow {x^2} - 2 + \;\frac{1}{{{x^2}}} = 36\)

\( \Rightarrow {x^2} + \;\frac{1}{{{x^2}}} = 38\)    -----(2)

\( ∴ \;{x^3} - \;\frac{1}{{{x^3}}}\; = \left( {\;x - \;\frac{1}{x}\;} \right)\left( {\;{x^2} + x\frac{1}{x} + \;\frac{1}{{{x^2}}}\;} \right)\)

\(\Rightarrow \;{x^3} - \;\frac{1}{{{x^3}}}\; = \left( {\;x - \;\frac{1}{x}\;} \right)\left( {\;{x^2} + \;\frac{1}{{{x^2}}} + 1} \right)\)

\(\Rightarrow \;{x^3} - \;\frac{1}{{{x^3}}}\; = 6 \times (38 + 1)\)

\(x^3 - \frac{1}{x^3} = 234\)

∴ The required value is 234.

 Shortcut TrickGiven:

x = √10 + 3

Formula used: 

\(\rm If ~x -\frac{1}{x} = a \)

⇒ \(x^3 - \frac{1}{x^3} = a^3 + 3a\)

Calculation:

x = √10 + 3

⇒ 1/x = √10 - 3

⇒ \(x -\frac{1}{x} = 6\) 

⇒ \(x^3 - \frac{1}{x^3} = 6^3 + 3\times 6\)

⇒ \(x^3 - \frac{1}{x^3} = 234\)

∴ The required value is 234.

If \(\rm x-\frac{1}{x}=-6\), what will be the value of \(\rm x^5-\frac{1}{x^5}\)?

  1. -8898
  2. -8896
  3. -8886
  4. -8892

Answer (Detailed Solution Below)

Option 3 : -8886

Identities Question 8 Detailed Solution

Download Solution PDF

Given:

x - (1/x) = (- 6)

Formula used:

If x - (1/x) = P, then

x + (1/x) = √(P2 + 4) 

If x + (1/x) = P, then

x3 + (1/x3) = (P3 - 3P)

x5 - (1/x5) = {x3 + (1/x3)} × {x2 - 1/x2} + {x - (1/x)}

Calculation:

x - (1/x) = (- 6)

x + (1/x) = √{(- 6)2 + 4} = √40 = 2√10

So, x2 - 1/x2 = (x + 1/x) (x - 1/x) = 2√10 × (-6) = -12√10

and x3 + (1/x3) =  (√40)3 - 3√40

⇒ 40√40 - 3√40 = 37 × 2√10 = 74√10

Now,

x5 - (1/x5) = {x3 + (1/x3)} × {x2 - 1/x2} + {x - (1/x)}

⇒ {74√10 × (-12√10)} + (- 6)

⇒ - 74 × 12 × (√10 × √10) - 6

⇒ (- 8880) - 6 = - 8886

∴ The correct answer is  - 8886.

If p – 1/p = √7, then find the value of p3 – 1/p3.

  1. 12√7
  2. 4√5
  3. 8√7
  4. 10√7

Answer (Detailed Solution Below)

Option 4 : 10√7

Identities Question 9 Detailed Solution

Download Solution PDF

Given:

p – 1/p = √7

Formula:

P3 – 1/p3 = (p – 1/p)3 + 3(p – 1/p)

Calculation:

P3 – 1/p3 = (p – 1/p)3 + 3 (p – 1/p)

⇒ p3 – 1/p3 = (√7)3 + 3√7

⇒ p3 – 1/p3 = 7√7 + 3√7

⇒ p3 – 1/p3 = 10√7

Shortcut Trick x - 1/x = a, then x3 - 1/x3 = a3 + 3a

Here, a = √7                                                          ( put the value in required eqn )

⇒p3 – 1/p3 = (√7)3 + 3 × √7 = 7√7 + 3√7

 ⇒p3 – 1/p3  = 10√7.

Hence; option 4) is correct.

If a + b + c = 14, ab + bc + ca = 47 and abc = 15 then find the value of a3 + b3 +c3.

  1. 815
  2. 825
  3. 835
  4. 845

Answer (Detailed Solution Below)

Option 1 : 815

Identities Question 10 Detailed Solution

Download Solution PDF

Given:

a + b + c = 14, ab + bc + ca = 47 and abc = 15

Concept used:

a³ + b³ + c³ - 3abc = (a + b + c) × [(a + b + c)² - 3(ab + bc + ca)]

Calculations:

a³ + b³ + c³ - 3abc = 14 × [(14)² - 3 × 47]

⇒ a³ + b³ + c³ – 3 × 15 = 14(196 – 141)

⇒ a³ + b³ + c³ = 14(55) + 45

⇒ 770 + 45

⇒ 815

∴ The correct choice is option 1.

If \(a + \frac{1}{a} = 7\), then \(a^5 + \frac{1}{a^5} \)is equal to:

  1. 15127
  2. 13127
  3. 14527 
  4. 11512

Answer (Detailed Solution Below)

Option 1 : 15127

Identities Question 11 Detailed Solution

Download Solution PDF

Given:

\(a + \frac{1}{a} = 7\)

Formula used:

(a + 1/a) = P ; then

(a2 + 1/a2) = P2 - 2

(a3 + 1/a3) = P3 - 3P

\(a^5 + \frac{1}{a^5} \) = (a2 + 1/a2) × (a3 + 1/a3) - (a + 1/a)

Calculation:

a + (1/a) = 7

⇒ (a2 + 1/a2) = (7)2 - 2 = 49 - 2 = 47

⇒ (a3 + 1/a3) = (7)3 - (3 × 7) = 343 - 21 = 322

a+ (1/a5= (a2 + 1/a2) × (a3 + 1/a3) - (a + 1/a)

⇒ 47 × 322 - 7

⇒ 15134 - 7 = 15127

 ∴ The correct answer is 15127.

The sum of values of x satisfying x2/3 + x1/3 = 2 is:

  1. -3
  2. 7
  3. -7
  4. 3

Answer (Detailed Solution Below)

Option 3 : -7

Identities Question 12 Detailed Solution

Download Solution PDF

Formula used:

(a + b)3 = a3 + b3 + 3ab(a + b)

Calculation:

⇒ x2/3 + x1/3 = 2

⇒ (x2/3 + x1/3)3 = 23

⇒ x2 + x + 3x(x2/3 + x1/3) = 8

⇒ x2 + 7x - 8 = 0

⇒ x2 + 8x - x - 8 = 0

⇒ x (x + 8) - 1 (x + 8) = 0

⇒ x = - 8 or x = 1

∴ Sum of values of x = -8 + 1 = - 7.

If a + b + c = 0, then (a3 + b3 + c3)2 = ?

  1. 3a2b2c2
  2. 9a2b2c2
  3. 9abc
  4. 27abc

Answer (Detailed Solution Below)

Option 2 : 9a2b2c2

Identities Question 13 Detailed Solution

Download Solution PDF

Formula used:

a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

Calculation:

a + b + c = 0

a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

⇒ a3 + b3 + c3 - 3abc = 0 × (a2 + b2 + c2 - ab - bc - ca) = 0

⇒ a3 + b3 + c3 - 3abc = 0

⇒ a3 + b3 + c3 = 3abc 

Now, (a3 + b3 + c3)2 = (3abc)2 = 9a2b2c2 

If (a + b + c) = 19 and (a2 + b2 + c2) = 155, find the value of (a - b)2 + (b - c)2 + (c - a)2.

  1. 104
  2. 108
  3. 100
  4. 98

Answer (Detailed Solution Below)

Option 1 : 104

Identities Question 14 Detailed Solution

Download Solution PDF

Given:

(a + b + c) = 19

(a2 + b2 + c2) = 155

Formula used:

a2 + b2 + c2 - (ab + bc + ca) = (1/2) × [(a - b)2 + (b - c)2 + (c - a)2]

Calculation:

a + b + c = 19

Squaring both sides

⇒ (a + b + c)2 = (19)2

⇒ a2 + b2 + c2 + 2 × (ab + bc + ca) = 361

⇒ 155 + 2 × (ab + bc + ca) = 361

⇒ 2 × (ab + bc + ca) = (361 - 155)

⇒ (ab + bc + ca) = 206/2 = 103

Now,

a2 + b2 + c2 - (ab + bc + ca) = (1/2) × [(a - b)2 + (b - c)2 + (c - a)2]

⇒ 2 × (155 - 103) = (a - b)2 + (b - c)2 + (c - a)2

⇒ (a - b)2 + (b - c)2 + (c - a)2 = 104

∴ The correct answer is 104.

If \((x^2+\frac{1}{x^2})=7\), and 0 < x < 1, find the value of \(x^2-\frac{1}{x^2} \).

  1. 3√5
  2. 4√3
  3. -4√3
  4. -3√5

Answer (Detailed Solution Below)

Option 4 : -3√5

Identities Question 15 Detailed Solution

Download Solution PDF

Given:

x2 + (1/x2) = 7

Formula used:

x2 + (1/x2) = P

then x + (1/x) = √(P + 2)

and x - (1/x) = √(P - 2)

⇒ x2 - (1/x2) = {x + (1/x)} × {x - (1/x)}

Calculation:

x2 + (1/x2) = 7

⇒ x + (1/x) = √(7 + 2) = √9

⇒ x + (1/x) = 3

⇒ x - (1/x) = -√(7 - 2)

⇒ x - (1/x) = - √5 {0 < x < 1}

x2 - (1/x2) = {x + (1/x)} × {x - (1/x)}

⇒ 3 × (- √5)

∴ The correct answer is - 3√5.

Mistake Points

Please note that 

0 < x < 1

so

1/x > 1

so

x + 1/x > 1

and

x - 1/x < 0 (because 0 < x < 1 and 1/x > 1 so x - 1/x < 0)

so

(x - 1/x)(x + 1/x) < 0

Get Free Access Now
Hot Links: teen patti gold real cash teen patti master new version teen patti customer care number