Evaluate using Substitution MCQ Quiz - Objective Question with Answer for Evaluate using Substitution - Download Free PDF

Last updated on Apr 23, 2025

Latest Evaluate using Substitution MCQ Objective Questions

Evaluate using Substitution Question 1:

Let \(I_{1}=\int_{0}^{1} \frac{\operatorname{cosec} x}{x} d x\) and \(I_{2}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{m} x}{x^{n}} d x\) then :

  1. I1 converges & I2 converges if n ≥ m + 1
  2. I1 converges & I2 converges if n, m ∈ N
  3. I1 diverges & I2 diverges if n < m 1
  4. I1 diverges & I2 converges if n < m + 1

Answer (Detailed Solution Below)

Option 4 : I1 diverges & I2 converges if n < m + 1

Evaluate using Substitution Question 1 Detailed Solution

Explanation:

Evaluation of Integrals \(I_1\) and \(I_2\)

We are given two integrals:

\(I_{1}=\int_{0}^{1} \frac{\operatorname{cosec} x}{x} dx\)

\(I_{2}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{m} x}{x^{n}} dx\)

We need to determine the conditions under which these integrals converge or diverge.

Analysis of \(I_1\):

The integral \(I_1\) is given by:

\(I_{1}=\int_{0}^{1} \frac{\operatorname{cosec} x}{x} dx\)

To analyze the convergence of this integral, we need to consider the behavior of the integrand near the limits of integration, particularly near \(x = 0\).

As \(x \to 0\), \(\operatorname{cosec} x = \frac{1}{\sin x}\) behaves like \(\frac{1}{x}\). Therefore, near \(x = 0\), the integrand \(\frac{\operatorname{cosec} x}{x}\) behaves like \(\frac{1}{x^2}\).

The integral \(\int_{0}^{\epsilon} \frac{1}{x^2} dx\) diverges as \(\epsilon \to 0\). Thus, \(I_1\) diverges.

Analysis of \(I_2\):

The integral \(I_2\) is given by:

\(I_{2}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{m} x}{x^{n}} dx\)

To determine the conditions for convergence of \(I_2\), we consider the behavior of the integrand near \(x = 0\) and \(x = \frac{\pi}{2}\).

Near \(x = \frac{\pi}{2}\), \(\sin x\) is close to 1, so the integrand does not pose any convergence issues. The critical part to analyze is the behavior near \(x = 0\).

As \(x \to 0\), \(\sin x \approx x\). Therefore, near \(x = 0\), the integrand \(\frac{\sin ^{m} x}{x^{n}}\) behaves like \(\frac{x^m}{x^n} = x^{m-n}\).

The integral \(\int_{0}^{\epsilon} x^{m-n} dx\) converges if and only if \(m-n > -1\), which simplifies to \(n < m + 1\).

Therefore, \(I_2\) converges if \(n < m + 1\).

Conclusion:

Based on the above analysis, we can conclude that:

\(I_1\) diverges and \(I_2\) converges if \(n < m + 1\).

Therefore, the correct option is:

Option 4: \(I_1\) diverges and \(I_2\) converges if \(n < m + 1\).

Additional Information

To further understand the analysis, let’s evaluate the other options:

Option 1: \(I_1\) converges and \(I_2\) converges if \(n \geq m + 1\).

This option is incorrect because \(I_1\) diverges as shown in the analysis. \(I_2\) converges when \(n < m + 1\), not \(n \geq m + 1\).

Option 2: \(I_1\) converges and \(I_2\) converges if \(n, m \in \mathbb{N}\).

This option is incorrect because \(I_1\) diverges regardless of the values of \(n\) and \(m\).

Option 3: \(I_1\) diverges and \(I_2\) diverges if \(n < m 1\).

This option is incorrect because \(I_2\) converges if \(n < m + 1\), which is the opposite condition to that stated.

Understanding the convergence properties of these integrals helps in correctly identifying the conditions under which they converge or diverge. This is crucial for solving problems in advanced calculus and mathematical analysis.

Evaluate using Substitution Question 2:

If \(I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x\), then \(\int_{0}^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin ^{4} x+\cos ^{4} x} d x\)  equals: 

  1. \(\frac{\pi^{2}}{16}\)
  2. \(\frac{\pi^{2}}{4}\)
  3. \(\frac{\pi^{2}}{8}\)
  4. \(\frac{\pi^{2}}{12}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{\pi^{2}}{16}\)

Evaluate using Substitution Question 2 Detailed Solution

Calculation

For I

Apply king (P– 5) and add 

⇒ \(2 \mathrm{I}=\int_{0}^{\pi / 2} \mathrm{dx}=\frac{\pi}{2} \Rightarrow \mathrm{I}=\frac{\pi}{4}\)

\(I_{2}=\int_{0}^{\pi / 2} \frac{x \sin x \cos x}{\sin ^{4} x+\cos ^{4} x} d x\)

Apply king and add 

⇒ \(\mathrm{I}_{2}=\frac{\pi}{4} \int_{0}^{\pi / 2} \frac{\tan \mathrm{x} \sec ^{2} \mathrm{xdx}}{\tan ^{4} \mathrm{x}+1}\)

put tan2 x = t 

⇒ \(\frac{\pi}{8} \int_{0}^{\infty} \frac{\mathrm{dt}}{\mathrm{t}^{2}+1}\)

 \(\frac{\pi}{8} \cdot \frac{\pi}{2}=\frac{\pi^{2}}{16}\)

Hence option 1 is correct

Evaluate using Substitution Question 3:

Let for ƒ(x) = 7tan8 x + 7tan6 x – 3tan4 x – 3tan2 x, \(\mathrm{I}_{1}=\int_{0}^{\pi / 4} f(\mathrm{x}) \mathrm{dx}\) and \(\mathrm{I}_{2}=\int_{0}^{\pi / 4} \mathrm{x} f(\mathrm{x}) \mathrm{d} \mathrm{x}\). Then 7I1 + 12I2 is equal to :

  1. π
  2. 1
  3. 2

Answer (Detailed Solution Below)

Option 3 : 1

Evaluate using Substitution Question 3 Detailed Solution

Calculation 

f(x) = (7tan6 x – 3tan2 x)(sec2 x)

\(I_{1}=\int_{0}^{\pi / 4}\left(7 \tan ^{6} x-3 \tan ^{2} x\right)\left(\sec ^{2} x\right) d x\)

Put tanx = t

\(I_{1}=\int_{0}^{1}\left(7 t^{6}-3 t^{2}\right) d t=\left[t^{7}-t^{3}\right]_{0}^{1}=0\)

\(I_{2}=\int_{0}^{\pi / 4} x \underbrace{\left(7 \tan ^{6} x-3 \tan ^{2} x\right)\left(\sec ^{2} x\right)}_{\mathrm{II}} d x\)

\(\left[x\left(\tan ^{7} x-\tan ^{3} x\right)\right]_{0}^{\pi / 4}-\int_{0}^{\pi / 4}\left(\tan ^{7} x-\tan ^{3} x\right) d x\)

\(0-\int_{0}^{\pi / 4} \tan ^{3} x\left(\tan ^{2} x-1\right)\left(1+\tan ^{2} x\right) d x\)

Put tanx = t

\(-\int_{0}^{1}\left(t^{5}-t^{3}\right) d t=-\left[\frac{t^{6}}{6}-\frac{t^{4}}{4}\right]=\frac{1}{12}\)

7I1 + 12I2 = 1 

Hence option 3 is correct

Evaluate using Substitution Question 4:

\(\int_{0}^{1}(0.001)^{\frac{x}{3}} \cdot e^{x} d x=\) ________.

  1. \(\frac{10-10 e}{\left(1+\log _{e} 10\right)}\)
  2. \( \frac{10-e}{e\left(1-\log _{e} 10\right)}\)
  3. \(\frac{e-10}{10\left(1-\log _{e} 10\right)}\)
  4. \( \frac{e-10}{10\left(1+\log _{10} e\right)}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{e-10}{10\left(1-\log _{e} 10\right)}\)

Evaluate using Substitution Question 4 Detailed Solution

Calculation

Given: \(\int_0^1 (0.001)^{\frac{x}{3}} \cdot e^x dx\)

I = \(\int_0^1 (10^{-3})^{\frac{x}{3}} \cdot e^x dx = \int_0^1 10^{-x} \cdot e^x dx\)

⇒ I = \(\int_0^1 e^{-x \ln 10} \cdot e^x dx = \int_0^1 e^{x(1 - \ln 10)} dx\)

Let \(u = x(1 - \ln 10)\). Then \(\frac{du}{dx} = 1 - \ln 10\), so \(du = (1 - \ln 10) dx\).

When \(x = 0\), \(u = 0\). When \(x = 1\), \(u = 1 - \ln 10\).

I = \(\int_0^{1 - \ln 10} e^u \frac{du}{1 - \ln 10} = \frac{1}{1 - \ln 10} \int_0^{1 - \ln 10} e^u du\)

⇒ I =  \(\frac{1}{1 - \ln 10} [e^u]_0^{1 - \ln 10} = \frac{1}{1 - \ln 10} (e^{1 - \ln 10} - e^0)\)

I = \(\frac{1}{1 - \ln 10} (e^{1 - \ln 10} - 1) = \frac{e^{1 - \ln 10} - 1}{1 - \ln 10}\)

⇒ I = \(\frac{e \cdot e^{-\ln 10} - 1}{1 - \ln 10} = \frac{e \cdot \frac{1}{10} - 1}{1 - \ln 10} = \frac{\frac{e}{10} - 1}{1 - \ln 10}\)

⇒ I = \(\frac{\frac{e - 10}{10}}{1 - \ln 10} = \frac{e - 10}{10(1 - \ln 10)}\)

Hence option 3 is correct.

Evaluate using Substitution Question 5:

If \(I_n = \int_{0}^{\pi/4} \tan^n x \, dx,\) then \(I_{13} + I_{11} =\)

  1. \(\ \frac{1}{13}\)
  2. \(\ \frac{1}{12}\)
  3. \(\ \frac{1}{10}\)
  4. \(\ \frac{1}{11}\)

Answer (Detailed Solution Below)

Option 2 : \(\ \frac{1}{12}\)

Evaluate using Substitution Question 5 Detailed Solution

Calculation

Given \(I_n = \int_{0}^{\pi/4} \tan^n x \, dx\)

\(I_n = \int_{0}^{\pi/4} \tan^n x \, dx = \int_{0}^{\pi/4} \tan^{n-2} x \tan^2 x \, dx\)

\(= \int_{0}^{\pi/4} \tan^{n-2} x (\sec^2 x - 1) \, dx\)

\(= \int_{0}^{\pi/4} \tan^{n-2} x \sec^2 x \, dx - \int_{0}^{\pi/4} \tan^{n-2} x \, dx\)

\(= \int_{0}^{\pi/4} \tan^{n-2} x \sec^2 x \, dx - I_{n-2}\)

Let \(u = \tan x\), then \(du = \sec^2 x \, dx\).

When \(x = 0\), \(u = 0\) and when \(x = \pi/4\), \(u = 1\).

\(\int_{0}^{\pi/4} \tan^{n-2} x \sec^2 x \, dx = \int_{0}^{1} u^{n-2} \, du = \left[ \frac{u^{n-1}}{n-1} \right]_{0}^{1} = \frac{1}{n-1}\)

Therefore, \(I_n = \frac{1}{n-1} - I_{n-2}\)

Or, \(I_n + I_{n-2} = \frac{1}{n-1}\)

We need to find \(I_{13} + I_{11}\). Using the formula above, we have:

\(I_{13} + I_{11} = \frac{1}{13-1} = \frac{1}{12}\)

Hence option 2 is correct

Top Evaluate using Substitution MCQ Objective Questions

Evaluate \(\rm \int_{1}^{e}\frac{dx}{x\sqrt{2+\ln x}}\)

  1. e
  2. \((​​\sqrt 2 - \sqrt 3)\)
  3. \((​​\sqrt 3 - \sqrt 2)\)
  4. 3

Answer (Detailed Solution Below)

Option 3 : 2 \((​​\sqrt 3 - \sqrt 2)\)

Evaluate using Substitution Question 6 Detailed Solution

Download Solution PDF

Concept:

\(\rm \dfrac{d(\ln x)}{dx} = \dfrac{1}{x}\)

 

Calculation:

Let I = \(\rm \int_{1}^{e}\frac{dx}{x\sqrt{2+\ln x}}\)

Let (2 + ln x) = t2

Differentiating with respect to x, we get

⇒ (0 + \(\rm \frac 1 x\))dx = 2tdt

⇒ \(\rm \frac 1 x\)dx = 2tdt

x

1

e

t

\(\sqrt 2\)

\(\sqrt 3\)

 

Now,

\(\rm I=\rm \int_{\sqrt 2}^{\sqrt 3}\frac{2tdt}{\sqrt{t^2}}\\=2\int_{\sqrt 2}^{\sqrt 3}\frac{tdt}{t}\\=2\int_{\sqrt 2}^{\sqrt 3}dt\\=2[t]_{\sqrt 2}^{\sqrt 3}\\=2(\sqrt 3- \sqrt 2)\)

\(\rm\int \limits_{-1}^1 {2x+1\over\left({x^2+x+1}\right)^2}dx\) = 

  1. \(-{1\over3}\)
  2. \(1\over3\)
  3. \(2\over3\)
  4. \(-{2\over3}\)

Answer (Detailed Solution Below)

Option 3 : \(2\over3\)

Evaluate using Substitution Question 7 Detailed Solution

Download Solution PDF

Concept:

Integral property:

  • ∫ xn dx = \(\rm x^{n+1}\over n+1\)+ C ; n ≠ -1
  • \(\rm∫ {1\over x} dx = \ln x\) + C
  • ∫ edx = ex+ C


Calculation:

I = \(\rm\int {2x+1\over\left({x^2+x+1}\right)^2}dx\)

Let x2 + x + 1 = t

⇒ (2x + 1) dx = dt

I = \(\rm \int {dt\over t^2}\)

I = \(\rm {t^{-1}\over{-1}}\)

I = \(\rm -1\over t\)

I = \(\rm -1\over x^2+x+1\)

Putting limits

I = \(\rm \left[-1\over x^2+x+1\right]_{-1}^1\)

I = \(\rm {-1\over 1^2+1+1} - \left({-1\over (-1)^2+(-1)+1}\right)\)

I = \(\rm 1-{1\over3}\) = \(\boldsymbol{2\over3}\)

What is \(\rm \int^1_0 \frac {\tan^{-1} x}{1 + x^2}dx\) equal to?

  1. \(\rm \frac {\pi^2}{8}\)
  2. \(\rm \frac {\pi^2}{32}\)
  3. \(\rm \frac {\pi}{4}\)
  4. \(\rm \frac {\pi}{8}\)

Answer (Detailed Solution Below)

Option 2 : \(\rm \frac {\pi^2}{32}\)

Evaluate using Substitution Question 8 Detailed Solution

Download Solution PDF

Concept:

\( \rm \int x^{n}dx = \frac{x^{n+1}}{n+1} + c\)

Calculation:

Let I = \(\rm \int^1_0 \frac {\tan^{-1} x}{1 + x^2}dx\)

Let tan-1 x = t

Differentiating both sides, we get

⇒ \(\rm \frac{1}{1+x^2} dx = dt\) 

x

0

1

t

0

π/4

 

Now, I \(= \rm \int _0^{\pi/4} t\;dt\)

\( = \rm [\frac{t^2}{2}]_0^{\pi/4}\)

\(= \rm \frac{1}{2}[\frac{\pi^2}{16}-0]\)

\(\rm \frac {\pi^2}{32}\)

Evaluate \(\rm \int_{0}^{1}{e}^{{x}}({e}^{{x}}-1)^{4}dx\)

  1. \(\rm \frac{(e+1)^{5}}{5}\)
  2. \(\rm \frac{(e-1)^{5}}{4}\)
  3. \(\rm \frac{(e-1)^{5}}{5}\)
  4. 0

Answer (Detailed Solution Below)

Option 3 : \(\rm \frac{(e-1)^{5}}{5}\)

Evaluate using Substitution Question 9 Detailed Solution

Download Solution PDF

Concept:

\(\rm \int x^n dx=\frac{x^{n+1}}{n+1}+c\)

 

Calculation:

Let I = \(\rm \int_{0}^{1}{e}^{{x}}({e}^{{x}}-1)^{4}dx\)

Let (ex - 1) = t

Differentiating with respect to x, we get

⇒ exdx = dt

\(\rm I = \int_{0}^{1} t^{4}dt \\=\left[\frac{t^{5}}{5}\right]_0^1\)

Put t = (ex - 1) 

\(\rm =\left[\frac{(e^x-1)^{5}}{5}\right]_0^1\\=\left[\frac{(e^1-1)^{5}}{5} -\frac{(e^0-1)^{5}}{5} \right]\\=\frac{(e-1)^{5}}{5}\)

Find the value of \(\rm \int_{0}^{\pi\over2}\sin^2x\cos x\) dx

  1. \(\rm -{1\over3}\)
  2. \(\rm 1\over3\)
  3. \(\rm 2\over3\)
  4. \(\rm -{2\over3}\)

Answer (Detailed Solution Below)

Option 2 : \(\rm 1\over3\)

Evaluate using Substitution Question 10 Detailed Solution

Download Solution PDF

Concept:

  • ∫ sin x dx = -cos x + C
  • ∫ cos x dx = sin x + C
  • ∫ xn dx = \(\rm {x^{n+1}\over n+1}\) + C

Calculation:

I = \(\rm ∫\sin^2x\cos x\)dx

Let sin x = t

dt = cos x dx

⇒ I = ∫ t2 (dt)

⇒ I =  \(\rm t^3\over3\) + c

⇒ I = \(\rm {\sin^3x\over3}\) + c

Putting the limits 

⇒ I = \(\rm \left[{\sin^3x\over3}+c\right]^{\pi\over2}_0\)

⇒ I = \(\rm \left[{\sin^3{\pi\over2}\over3}+c\right]-\left[{\sin^3(0)\over3}+c\right]\)

⇒ I = \(\boldsymbol {\rm {1\over3}}\)

\(\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{{\cos {\rm{x}}}}{{1 + {{\sin }^2}{\rm{x}}}}{\rm{dx}}\) is equal to?

  1. π/4
  2. π/2
  3. π/6
  4. π/3

Answer (Detailed Solution Below)

Option 1 : π/4

Evaluate using Substitution Question 11 Detailed Solution

Download Solution PDF

Concept:

\(\smallint \frac{1}{{1 + {{\rm{x}}^2}}}{\rm{dx}} = {\tan ^{ - 1}}{\rm{x}} + {\rm{c}}\)

Calculation:

I = \(\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{{\cos {\rm{x}}}}{{1 + {{\sin }^2}{\rm{x}}}}{\rm{dx}}\)

Let sin x = t

⇒ cos x dx = dt

x

0

π/2

t

0

1

 

\({\rm{I}} = \mathop \smallint \nolimits_0^1 \frac{1}{{1 + {{\rm{t}}^2}}}{\rm{dt}} \)

\(= {\rm{\;}}\left[ {{{\tan }^{ - 1}}{\rm{t}}} \right]_0^1\)

= tan-11 – tan-1 0

= π/4

Evaluate \(\rm \int_{0}^{\pi/4}\frac{\sin^{3}x}{\cos^{5}x}dx\)

  1. \(\frac{3}{4}\)
  2. \(\frac{1}{2}\)
  3. \(\frac{1}{4}\)
  4. \(\frac{1}{5}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{1}{4}\)

Evaluate using Substitution Question 12 Detailed Solution

Download Solution PDF

Concept:

\(\rm \int x^n dx=\frac{x^{n+1}}{n+1}+c\)

 

Calculation:

Let I = \(\rm \int_{0}^{\pi/4}\frac{\sin^{3}x}{\cos^{5}x}dx\)

\(\rm = \int_{0}^{\pi/4}\frac{\sin^{3}x}{\cos^{3}x}\times \frac{1}{\cos^2 x}dx\\=\int_{0}^{\pi/4} \tan^3 x\times \sec^2 x dx\)

Let tan x = t

Differentiating with respect to x, we get

⇒ sec2 x dx =dt

x

0

π/4

t

0

1

 

Now,

\(\rm I = \int_{0}^{1} t^3 dt\\=\left[\frac{t^4}{4}\right]_0^1\\=\frac{1}{4}\)

Evaluate \(\rm \int_0^{\pi\over2} {\cos x\over1+\sin^2x}\) dx

  1. 90º
  2. 45º
  3. tan-1 \(\rm \left({1\over\sqrt2}\right)\)
  4. \(\rm -\tan^{-1}\left({1\over\sqrt2}\right)\)

Answer (Detailed Solution Below)

Option 2 : 45º

Evaluate using Substitution Question 13 Detailed Solution

Download Solution PDF

Concept: 

Integral property:

  • ∫ xn dx = \(\rm x^{n+1}\over n+1\)+ C ; n ≠ -1
  • \(\rm\int {1\over x} dx = \ln x\) + C
  • ∫ edx = ex+ C
  • ∫ adx = (ax/ln a) + C ; a > 0,  a ≠ 1
  • ∫ sin x dx = - cos x + C
  • ∫ cos x dx = sin x + C
  • \(\rm \int{1\over 1+ x^2}\)dx = tan-1 x + C

Substitution method: If the function cannot be integrated directly substitution method is used. To integration by substitution is used in the following steps:

  • A new variable is to be chosen, say “t”
  • The value of dt is to is to be determined.
  • Substitution is done and integral function is then integrated.
  • Finally, initial variable t, to be returned.

 

Calculation:

Let sin x = t ⇒ cos x dx = dt

⇒ I = \(\rm \int {\cos x\over1+\sin^2x}\) dx

⇒ I = \(\rm \int{1\over 1+ t^2}\) dt

⇒ I = tan-1 t + c

⇒ I = tan-1 (sin x) + c

Putting the limits

⇒ I = [tan-1 (sin 90º) + c] - [tan-1 (sin 0º) + c]

⇒ I = tan-1 (1)

⇒ I = 45º or π/4

\(\int_0^{\pi/4}\sin^3 \theta d\theta=?\)

  1. \(\frac{2}{3}+\frac{5}{6\sqrt2}\)
  2. \(\frac{2}{3}-\frac{5}{6\sqrt2}\)
  3. \(-\frac{2}{3}+\frac{5}{6\sqrt2}\)
  4. \(-\frac{2}{3}-\frac{5}{6\sqrt2}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{2}{3}-\frac{5}{6\sqrt2}\)

Evaluate using Substitution Question 14 Detailed Solution

Download Solution PDF

Given:

\(\int_0^{\pi/4}\sin^3 \theta d\theta\)

Concept:

Use formula \(\rm sin^2\theta=1-cos^2\theta\)

Calculation:

\(\int_0^{\pi/4}\sin^3 \theta d\theta\)

\(\rm =\int_0^{\pi/4}(1-cos^2\theta)sin\theta \ d\theta\)

\(\rm =\int_0^{\pi/4}sin\theta \ d\theta-\int_0^{\pi/4}cos^2\theta\ sin\theta\ d \theta\)  

put \(\rm cos\theta=u \implies sin\theta=-d\theta\) 

\(\rm =\int_0^{\pi/4}sin\theta \ d\theta+\int_0^{\pi/4}u^2\ du\)

\(\rm =[-cos\theta]_0^{\pi/4}+[\frac{cos^{3} \theta}{3}]_0^{\pi/4}\)

\(\rm =-[\frac{1}{\sqrt2}-1]+\frac{1}{3}[\frac{1}{2\sqrt2}-1]\)

\(\rm =\frac{2}{3}-\frac{5}{6\sqrt2}\)

Hence the option (2) is correct.

Evaluate:

\(\rm \int _0^{\pi\over6}x\sin3x^2dx\)

  1. \(\rm {\cos {\pi\over12}\over6}\)
  2. \(\rm {1-\cos {\pi\over12}\over6}\)
  3. \(\rm {1-\cos {\pi^2\over12}\over6}\)
  4. \(\rm {\cos {\pi^2\over12}\over6}\)

Answer (Detailed Solution Below)

Option 3 : \(\rm {1-\cos {\pi^2\over12}\over6}\)

Evaluate using Substitution Question 15 Detailed Solution

Download Solution PDF

Concept:

Integral property:

  • ∫ xn dx = \(\rm x^{n+1}\over n+1\)+ C ; n ≠ -1
  • \(\rm∫ {1\over x} dx = \ln x\) + C
  • ∫ edx = ex+ C
  • ∫ adx = (ax/ln a) + C ; a > 0,  a ≠ 1
  • ∫ sin x dx = - cos x + C
  • ∫ cos x dx = sin x + C

Substitution method: If the function cannot be integrated directly substitution method is used. To integration by substitution is used in the following steps:

  • A new variable is to be chosen, say “t”
  • The value of dt is to be determined.
  • Substitution is done and the integral function is then integrated.
  • Finally, the initial variable t, to be returned.

 

Calculation:

I = \(\rm \int x\sin3x^2dx\)

Let 3x2 = t; ⇒ 6x dx = dt

I = \(\rm {1\over6}\int \sin tdt\)

I = \(\rm -{1\over6} \cos t\)

I = \(\rm -{1\over6}\cos 3x^2\)

Putting up the limits
I = \(\rm \left[-{1\over6}\cos 3x^2\right]_0^{\pi\over6}\)

I = \(\rm -{1\over6}\left[\cos 3({\pi\over6})^2 - \cos 3(0)^2\right]\)

I = \(\rm -{1\over6}\left[\cos {\pi^2\over12} - 1\right]\)

I = \(\rm {1-\cos {\pi^2\over12}\over6}\)

Get Free Access Now
Hot Links: teen patti winner teen patti diya teen patti list teen patti palace