Evaluate using Trigonometric Identities MCQ Quiz - Objective Question with Answer for Evaluate using Trigonometric Identities - Download Free PDF
Last updated on Apr 30, 2025
Latest Evaluate using Trigonometric Identities MCQ Objective Questions
Evaluate using Trigonometric Identities Question 1:
The integral \(\displaystyle \int_{0}^{\pi} \sqrt{1+4\sin ^{2}\displaystyle\frac{x}{2}-4\sin \displaystyle\frac{x}{2}} dx\) equals
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 1 Detailed Solution
\(I=\displaystyle\int_0^\pi\sqrt{1+4\sin^2(x/2)-4\sin(x/2)}dx\)
\(I=\displaystyle\int_0^\pi|2\sin(x/2)-1|dx\)
If x = 0
And if x = \(\dfrac{\pi}{3}\)
\(\therefore I=\displaystyle\int_0^{\pi/3}-(2\sin(x/2)-1)dx+\displaystyle\int_{\pi/3}^{\pi}(2\sin(x/2)-1)dx\)
\(I=[4cos(x/2)+x]_0^{\pi/3}+[-4\cos (x/2)-x]_{\pi/3}^\pi\)
\(I=\dfrac{4\sqrt3}{2}+\dfrac{\pi}{3}-4+\Big(0-\pi+\dfrac{4\sqrt3}{2}+\dfrac{\pi}{3}\Big)\)
\(I=4\sqrt3-4-\dfrac{\pi}{3}\)
Evaluate using Trigonometric Identities Question 2:
The value of the integral
\(\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d y d x\) is:
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 2 Detailed Solution
Concept:
The given integral is: \( \int_{-1}^{1} \int_{0}^{\sqrt{1 - x^2}} (x^2 + y^2)^{\frac{3}{2}} \, dy\, dx \)
This represents a double integral over the upper half of the unit circle centered at the origin. So, converting it into polar coordinates simplifies the integration process.
Let \( x = r\cos\theta,\ y = r\sin\theta \) and \( dx\,dy = r\,dr\,d\theta \)
The region of integration becomes a semicircle: \( r \in [0,1],\ \theta \in [0,\pi] \)
Calculation:
In polar coordinates, \( x^2 + y^2 = r^2 \Rightarrow (x^2 + y^2)^{3/2} = r^3 \)
So, the integral becomes:
\( \int_{0}^{\pi} \int_{0}^{1} r^3 \cdot r \, dr\, d\theta = \int_{0}^{\pi} \int_{0}^{1} r^4 \, dr\, d\theta \)
\(= \int_{0}^{\pi} \left[\frac{r^5}{5}\right]_{0}^{1} d\theta = \int_{0}^{\pi} \frac{1}{5} \, d\theta = \frac{\pi}{5} \)
Correct Option:
The correct answer is: 3) π/5
Evaluate using Trigonometric Identities Question 3:
The value of \(\int_{0}^{1} \frac{a-b x^{2}}{\left(a+b x^{2}\right)^{2}} d x\) is :
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 3 Detailed Solution
Explanation:
We are given the integral:
Integral: I = \(\int_{0}^{1} \frac{a-b x^{2}}{\left(a+b x^{2}\right)^{2}} d x\)
Step 1: Substitution
Let u = a + bx², then du = 2bx dx.
Hence, x dx = du / (2b).
After substitution, the limits change: when x = 0, u = a, and
when x = 1, u = a + b.
The integral becomes:
I = 1 / (2b) ∫aa+b (2a - u) / u² du
Step 2: Decompose the Integral
I = 1 / (2b) [ 2a ∫aa+b 1/u² du - ∫aa+b 1/u du ]
Each part is solved as follows:
- ∫aa+b 1/u² du = [ -1/u ]aa+b = 1/a - 1/(a+b)
- ∫aa+b 1/u du = ln(u)aa+b = ln(a+b) - ln(a)
Thus, the integral becomes:
I = 1 / (2b) [ 2a (1/a - 1/(a+b)) - (ln(a+b) - ln(a)) ]
Final Result:
The value of the integral is: I = 1 / (a + b)
Evaluate using Trigonometric Identities Question 4:
In I(m, n) = \(\int_{0}^{1} x^{m-1}(1-x)^{\mathrm{n}-1} d x\), m, n > 0, then I(9, 14) + I(10, 13) is
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 4 Detailed Solution
Calculation
\(\mathrm{I}(\mathrm{~m}, \mathrm{~m})=\int_{0}^{1} \mathrm{x}^{\mathrm{m}-1}(1-\mathrm{x})^{\mathrm{n}-1} \mathrm{dx}\)
Let x = sin2θ dx = 2sinθcosθdθ
⇒ \(I(m, n)=2 \int_{0}^{\pi / 2}(\sin \theta)^{2 m-1}(\cos \theta)^{2 n-1} d \theta\)
⇒ I (9, 14) + I (10, 13) = \(2 \int_{0}^{\pi / 2}(\sin \theta)^{17}(\cos \theta)^{27} d \theta\)
\(+2 \int_{0}^{\pi / 2}(\sin \theta)^{19}(\cos \theta)^{25} d \theta\)
⇒ \(2 \int_{0}^{\pi / 2}(\sin \theta)^{17}(\cos \theta)^{25} d \theta\)
⇒ I (9, 13)
Hence option 4 is correct
Evaluate using Trigonometric Identities Question 5:
Let \(\int x^{3} \sin x d x=g(x)+C\), where C is the constant of integration.
If \(8\left(\mathrm{~g}\left(\frac{\pi}{2}\right)+\mathrm{g}^{\prime}\left(\frac{\pi}{2}\right)\right)=α \pi^{3}+β \pi^{2}+γ, α, β, γ \in \mathrm{Z}\),
Then α + β – γ equals :
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 5 Detailed Solution
Calculation
\(\int x^{3} \sin x d x=-x^{3} \cos x+\int 3 x^{2} \cos x d x\)
= \(-x^{3} \cos x+3 x^{2} \sin x-\int 6 x \sin x d x\)
= -x3 cos x + 3x2 sin x + 6x cos x - 6 sin x + c
So g(x) = -x3 cos x + 3x2 sin x + 6x cos x - 6 sin x
\(g\left(\frac{\pi}{2}\right)=\frac{3 \pi^{2}}{4}-6\)
g'(x) = 3x2 cos x + x3 sin x + 6cos x - 6cos x
\(\mathrm{g}^{\prime}\left(\frac{\pi}{2}\right)=\frac{\pi^{3}}{8}\)
\(8\left(g\left(\frac{\pi}{2}\right)+g^{\prime}\left(\frac{\pi}{2}\right)\right)=\pi^{3}+6 \pi^{2}-48\)
So α + β – γ = 55
Hence option 1 is correct
Top Evaluate using Trigonometric Identities MCQ Objective Questions
The value of \(\mathop \smallint \limits_0^{1} \sqrt {1 + \sin \frac{{\rm{x}}}{2}} {\rm{dx\;}}\) is
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 6 Detailed Solution
Download Solution PDFConcept:
- \({\sin ^2}{\rm{x}} + {\cos ^2}{\rm{x}} = 1\)
- \(\sin 2{\rm{x}} = 2\sin {\rm{x}}\cos {\rm{x}}\)
Calculation:
Let, \({\rm{I}} = \mathop \smallint \limits_0^{1} \sqrt {1 + \sin \frac{{\rm{x}}}{2}} {\rm{dx}}\)
\(= \mathop \smallint \limits_0^1 \sqrt {{{\sin }^2}\left( {\frac{{\rm{x}}}{4}} \right) + {{\cos }^2}\left( {\frac{{\rm{x}}}{4}} \right) + \sin \frac{{\rm{x}}}{2}} {\rm{dx}} \) ----( \({\sin ^2}\left( {\frac{{\rm{x}}}{4}} \right) + {\cos ^2}\left( {\frac{{\rm{x}}}{4}} \right)\) = 1)
\(= \mathop \smallint \limits_0^1 \sqrt {{{\sin }^2}\left( {\frac{{\rm{x}}}{4}} \right) + {{\cos }^2}\left( {\frac{{\rm{x}}}{4}} \right) + 2\sin \left( {\frac{{\rm{x}}}{4}} \right)\cos \left( {\frac{{\rm{x}}}{4}} \right)} {\rm{dx}} \) -----\(\left( {\sin \frac{{\rm{x}}}{2} = 2\sin \left( {\frac{{\rm{x}}}{4}} \right)\cos \left( {\frac{{\rm{x}}}{4}} \right)} \right)\)
\(\Rightarrow {\rm{I}} = \mathop \smallint \limits_0^1 \sqrt {{{\left( {\sin \left( {\frac{{\rm{x}}}{4}} \right) + \cos \left( {\frac{{\rm{x}}}{4}} \right)} \right)}^2}} {\rm{dx}}\)
\(\Rightarrow {\rm{I}} = \mathop \smallint \limits_0^1\left| {\sin \left( {\frac{{\rm{x}}}{4}} \right) + \cos \left( {\frac{{\rm{x}}}{4}} \right)} \right|{\rm{dx}}\)
Let \(\frac{{\rm{x}}}{4} = {\rm{t}}\)
Differentiating with respect to x, we get
\(\Rightarrow \frac{{{\rm{dx}}}}{4} = {\rm{dt}}\)
\(\Rightarrow {\rm{dx}} = 4{\rm{dt}}\)
Limits become for x = 0, t = 0
for x = 1, t = 1/4 = 0.25
\(\therefore {\rm{I}} = 4\mathop \smallint \limits_0^{0.25} \left| {\sin \left( {\rm{t}} \right) + \cos \left( {\rm{t}} \right)} \right|{\rm{dt}}\)
\(\Rightarrow {\rm{I}} = 4\left[ { - \cos {\rm{t}} + \sin {\rm{t}}} \right]_0^{0.25} \)
\(= 4\left[ {\left( { - \cos \left( {\frac{{\rm{1 }}}{4}} \right) + \sin \left( {\frac{{\rm{1 }}}{4}} \right)} \right) - \left( { - \cos 0 + \sin 0} \right)} \right] \)
\(= 4\left[ { 1 - \cos \left( {\frac{{\rm{1 }}}{4}} \right) + \sin \left( {\frac{{\rm{1 }}}{4}} \right)} \right] \)
Hence, option (4) is correct.
\(\int_{0}^{\pi /3}\sqrt{1+\sin 2x}\, dx\)
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 7 Detailed Solution
Download Solution PDFConcept:
- sin2 x + cos2 x = 1
- sin 2A = 2 sin A cos A
- ∫ cos x = sin x
-
∫ sin x = -cos x
Calculation:
\(∫_{0}^{\pi /3}\sqrt{1+\sin 2x}\, dx\)
\(\Rightarrow ∫_{0}^{\pi /3}\sqrt{(\sin ^2x\, +\, \cos ^2x\, +\, 2\sin x\, \cos x})\, dx\)
\(\Rightarrow ∫_{0}^{\pi /3}(\cos x\, +\,\sin x)\, dx\)
\(\Rightarrow \left [ \sin x \, -\, \cos x \right ]_{0}^{\pi /3}\)
\(\Rightarrow \left [ \sin \frac{\pi }{3}\, -\, \cos \frac{\pi }{3} \right ]-(\sin 0\, -\, \cos 0) \)
\(\Rightarrow \left [ \frac{\sqrt{3} }{2}\, -\, \frac{1 }{2} \right ]-(0\, -\, 1)\)
\(\Rightarrow \left [ \frac{\sqrt{3}-1 }{2} \right ]+ 1\)
\(\Rightarrow \frac{\sqrt{3}+1}{2}\)
Hence, \(∫_{0}^{\pi /3}\sqrt{1+\sin 2x}\, dx=\frac{\sqrt{3}+1}{2}\)
What is the value of \(\rm \displaystyle\int_0^{\pi/4}(\tan^3 x + \tan x)dx \ ?\)
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 8 Detailed Solution
Download Solution PDFConcept:
1 + tan2 x = sec2 x
\(\rm \displaystyle \int x^n dx=\frac{x^{n+1}}{n+1}+c\)
Calculation:
\(\text{Let I} = \rm \displaystyle \int_0^{π/4} (\tan^3 x + \tan x)dx\\\Rightarrow\rm \displaystyle \int_0^{π/4} \tan x(\tan^2 x + 1)dx\)
\(\\\Rightarrow \rm \displaystyle \int_0^{π/4} \tan x \sec^2 x dx\) (∵ 1 + tan2 x = sec2 x)
Let tanx = t
Differentiating with respect to x, we get
⇒ sec2 x dx = dt
x | 0 | π/4 |
t | 0 | 1 |
\(\Rightarrow\rm \displaystyle \int_0^1 tdt\\\Rightarrow[\frac{t^2}{2}]_0^1\\\Rightarrow\frac{1}{2}-0=\frac{1}{2}\)
∴ The value of the integral \(\rm \displaystyle\int_0^{\pi/4}(\tan^3 x + \tan x)dx \ \)is 1/2.
What is \(\rm\mathop \smallint \limits_0^{2{\rm{\pi }}} \sqrt {1\ +\ cos\ {2x}} {\rm{dx\;}}\) equal to?
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 9 Detailed Solution
Download Solution PDFConcept:
- \({\sin ^2}{\rm{x}} + {\cos ^2}{\rm{x}} = 1\)
- \(\rm \cos 2{\rm{x}} = \cos^2 x - \sin^2x\)
Calculation:
Given: \({\rm{I}} = \mathop \smallint \limits_0^{2{\rm{\pi }}} √ {1 + \cos 2x} {\rm{dx}}\)
\(= \mathop \smallint \limits_0^{2{\rm{\pi }}} √ {{{\sin }^2}\ x + {{\cos }^2}\ x + \cos^2 x - \sin^2x}\) (1 = \({\sin ^2}x + {\cos ^2}x\))
\(= \mathop \smallint \limits_0^{2{\rm{\pi }}} √ {2 \cos^2 x}\ dx\)
= \(\rm √ 2 \mathop \smallint \limits_0^{2{\rm{\pi }}} \cos x \ dx\)
= \(\rm √ 2 \left[ {\sin x} \right]_0^{{{\rm{2\pi }}}}\)
= \(\rm √ 2 [\sin {2\pi\ -\ \sin 0}]\)
= 0
Evaluate: \(\rm \int_{0}^{\pi/2}\cos^2x\ dx\)
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 10 Detailed Solution
Download Solution PDFConcept:
Definite Integral:
If ∫ f(x) dx = g(x) + C, then \(\rm \int_a^b f(x)\ dx = [ g(x)]_a^b\) = g(b) - g(a).
Trigonometric Identities:
cos 2x = 2 cos2 x - 1
Calculation:
Let I = \(\rm \int_{0}^{\pi/2}\cos^2x\ dx\)
⇒ I = \(\rm \int_{0}^{\pi/2}\frac{\cos 2x+1}{2}\ dx\)
⇒ I = \(\rm \frac{1}{2}\left[\int_{0}^{\pi/2}\cos 2x\ dx+\int_{0}^{\pi/2}1\ dx\right]\)
⇒ I = \(\rm \frac{1}{2}\left[\frac{\sin 2x}{2}+x\right]_0^{\pi/2}\)
⇒ I = \(\rm \frac{1}{2}\left[\left(\frac{\sin \pi}{2}+\frac{\pi}{2}\right)-\left(\frac{\sin 0}{2}+0\right)\right]\)
⇒ I = \(\frac\pi4\).
What is \(\mathop \smallint \limits_0^{2{\rm{\pi }}} \sqrt {1 + \cos{ \frac{{\rm{x}}}{2}}} {\rm{dx\;}}\)equal to?
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 11 Detailed Solution
Download Solution PDFConcept:
\(\rm {\sin ^2}{\rm{x}} + {\cos ^2}{\rm{x}} = 1\)
\(\rm\cos 2{\rm{x}} = cos^2{x} - sin^2{x}\)
Calculation:
Let, \({\rm{I}} = \mathop \smallint \limits_0^{2{\rm{\pi }}} \sqrt {1 + \cos \frac{{\rm{x}}}{2}} {\rm{dx}}\)
\(⇒ {\rm{I}} = \mathop \smallint \limits_0^{2{\rm{\pi }}} \sqrt {(\rm 2cos^2{(\frac {x}{4})}})\)
\(⇒ {\rm{I}} =\sqrt 2 \mathop \smallint \limits_0^{2{\rm{\pi }}} \cos{(\frac {\rm x}{4})}\)
\(⇒ {\rm{I}} = 4\sqrt 2\left[ { \sin {\rm{(\frac {x}{4}})}} \right]_0^{2\pi}\)
\(⇒ {\rm{I}} = 4\sqrt 2[ { \sin {\rm{(\frac {2\pi}{4}}) - sin0^o}}]\)
\(⇒ {\rm{I}} = 4\sqrt 2 (\sin {\frac {\pi}{2}})\)
\(⇒ {\rm{I}} = 4 \sqrt 2\)
Hence, option (4) is correct.
Find the value of \(\rm \int_{0}^{\pi/2 } cos^3 x dx\)
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 12 Detailed Solution
Download Solution PDFConcept:
sin2 x + cos2 x = 1
\(\rm \frac{d(sinx)}{dx} = cos x\)
\(\rm \int x^ndx = \frac{x^{n + 1}}{n + 1}\)
\(\rm \int dx = x\)
Calculation:
I = \(\rm \int_{0}^{\pi/2 } cos^3 x dx\)
= \(\rm \int_{0}^{\pi/2 } cos^2 x .cos x dx\)
= \(\rm \int_{0}^{\pi/2 } (1 - sin^2 x) .cos x dx\)
Let, sin x = u
cos x dx = du
= \(\rm \int_{0}^{1} (1 - u^2)du\)
= \(\rm \left [u - \frac{u^{3}}{3} \right ]_{0}^{1}\)
= 1 - 0 - \(\rm \frac{1}{3} + 0\)
= \(\rm \frac{2}{3}\)
What is \(\rm \int^\pi _0 ln\left(tan\frac{x}{2}\right) dx\) equal to?
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 13 Detailed Solution
Download Solution PDFFormula used:
\(\rm \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx\)
tan(π - θ) = - tan θ
Calculation:
Let
I = \(\int^π _0 ln\left(tan\frac{x}{2}\right)dx\) ---(1)
According to the formula used
I = \(\int^π _0 ln\left(tan (π -\frac{x}{2})\right)dx\)
⇒ I = - \(\int^π _0 ln\left(tan\frac{x}{2}\right)dx\)
From equation (1)
⇒ I = -I
⇒ 2I = 0
⇒ I = 0
∴ The value of the integral \(\int^π _0 ln\left(tan\frac{x}{2}\right)dx\) is 0.
Evaluate: \(\rm \int_{0}^{\pi/2}\cos 2x\ dx\)
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 14 Detailed Solution
Download Solution PDFConcept:
Definite Integral:
If ∫ f(x) dx = g(x) + C, then \(\rm \int_a^b f(x)\ dx = [ g(x)]_a^b\) = g(b) - g(a).
Calculation:
Let I = \(\rm \int_{0}^{\pi/2}\cos 2x\ dx\)
⇒ I = \(\rm \left[\frac{\sin 2x}{2}\right]_0^{\pi/2}\)
⇒ I = \(\rm \left[\frac{\sin \pi}{2}-\frac{\sin 0}{2}\right]\)
⇒ I = 0.
What is the value of \(\rm \int_0^{\pi/4}(\cot^3 x + \cot x)dx \ ?\)
Answer (Detailed Solution Below)
Evaluate using Trigonometric Identities Question 15 Detailed Solution
Download Solution PDFConcept:
cot2 x = cosec2 x - 1
\(\rm \int x^{n}dx = \frac{x^{n+1}}{n+1} + C\)
Calculation:
I = \(\rm \int_0^{π/4}(\cot^3 x + \cot x)dx \ \)
I = \(\rm\int_{0}^{π /4}\left [ \left ( cosec^{2}x-1 \right )cotx+ cotx \right ]dx\)
I = \(\rm \int_{0}^{π /4}\left [ cosec^{2}x. cotx-cotx+cotx \right ]dx\)
I = \(\rm \int_{0}^{π /4}\left ( cosec^{2}x.cotx \right )dx\)
I = \(\rm \int_{0}^{π /4}\left ( \frac{1}{sin^{2}x} . \frac{cosx}{sinx}\right )dx\)
I = \(\rm\int_{0}^{π/4}\left ( \frac{cosx}{sin^{3}x} \right )dx\) ...(1)
Let , sin x = t
Differentiate both side w.r.t x ,
cos x dx = dt
If , x = 0 , then t = 0
x = π /4 , then t = \(\frac{1}{\sqrt{2}}\)
substitute above values in eq. (1)
I = \(\rm\int_{0}^{\frac{1}{\sqrt{2}}}\left ( \frac{dt}{t^{3}} \right )\)
I = \(\rm \left [ \frac{1}{-2t^{2}} \right ]_{0}^{\frac{1}{\sqrt{2}}}\)
I = \(\rm \frac{-1}{2}\left [ 2 -∞ \right ]\)
I = ∞
∴ The correct option is 4).