Integral Calculus MCQ Quiz - Objective Question with Answer for Integral Calculus - Download Free PDF
Last updated on Apr 22, 2025
Latest Integral Calculus MCQ Objective Questions
Integral Calculus Question 1:
Find the area of the region bounded by the curves y = \(\rm \frac{x^2}{2}\), the line x = 2, x = 0 and the x - axis ?
Answer (Detailed Solution Below)
Integral Calculus Question 1 Detailed Solution
Concept:
The area under the curve y = f(x) between x = a and x = b,is given by, Area = \(\rm \int_{x=a}^{x =b}f(x) \;dx\)
\(\smallint {{\rm{x}}^{\rm{n}}}{\rm{dx}} = \frac{{{{\rm{x}}^{{\rm{n}} + 1}}}}{{{\rm{n}} + 1}} + {\rm{C}}\)
Calculation:
Here, we have to find the area of the region bounded by the curves y = \(\rm \frac{x^2}{2}\), the line x = 2, x = 0 and the x - axis
So, the area enclosed by the given curves = \(\rm \int_0^2 {\rm \frac{x^2}{2}}\;dx\)
As we know that, \(\smallint {{\rm{x}}^{\rm{n}}}{\rm{dx}} = \frac{{{{\rm{x}}^{{\rm{n}} + 1}}}}{{{\rm{n}} + 1}} + {\rm{C}}\)
\(=\rm \int_0^2 {\frac {x^2}{2}}\;dx = \left[ {\frac{{{x^3}}}{6}} \right]_0^2\)
\(\rm = \frac{1}{6}\;\left( {8- 0\;} \right) = \frac 4 3 \;sq.\;units\)
Hence, option 4 is the correct answer.
Integral Calculus Question 2:
\(\rm \displaystyle\int_0^1 {1\over {1 + x^2}}dx =\)
Answer (Detailed Solution Below)
Integral Calculus Question 2 Detailed Solution
Concept:
\(\rm \int {1\over {1 + x^2}} dx = tan ^ {-1} x\)
Calculation:
\(\rm \displaystyle\int_0^1 {1\over {1 + x^2}}dx = [tan ^{-1}x]_{0}^{1} = [tan ^{-1}1 - tan^{-1} 0] = {\pi\over 4}\)
Integral Calculus Question 3:
What is the value of \(\mathop \smallint \nolimits_{ - {\rm{\pi }}/4}^{{\rm{\pi }}/4} \left( {\sin {\rm{x}} - \tan {\rm{x}}} \right){\rm{dx}}?\)
Answer (Detailed Solution Below)
Integral Calculus Question 3 Detailed Solution
Concept:
Integral properties: Consider a function f(x) defined on x.
- \(\mathop \smallint \limits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = \left\{ {\begin{array}{*{20}{c}} {2\mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}},\;\;\;f\left( {\rm{x}} \right) = f\left( { - x} \right)}\\ {0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;f\left( {\rm{x}} \right) = - f\left( { - x} \right)} \end{array}} \right.\)
Calculation:
Let f(x) = sin x – tan x
Checking the function is odd or even,
f(-x) = sin (-x) – tan (-x)
⇒ f(-x) = – sin x + tan x
⇒ f(-x) = –{sin x – tan x}
⇒ f(-x) = –f(x)
Hence, the function is odd.
And we know that, \(\mathop \smallint \limits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = 0\)
∴ \(\mathop \smallint \nolimits_{ - {\rm{\pi }}/4}^{{\rm{\pi }}/4} \left( {\sin {\rm{x}} - \tan {\rm{x}}} \right){\rm{dx}} = 0\)
Integral Calculus Question 4:
The integral \(\rm \int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x\) is equal to
Answer (Detailed Solution Below)
Integral Calculus Question 4 Detailed Solution
Calculation:
Let I = \(\rm \int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x\)
= \(\rm \int e^{x+\frac{1}{x}} d x+ \int x\left(1-\frac{1}{x^2}\right) e^{x+\frac{1}{x}} d x\)
= \(\rm \int e^{x+\frac{1}{x}} d x+ \int x\left(1-\frac{1}{x^2}\right) e^{x+\frac{1}{x}} d x\)
= \(\rm \int e^{x+\frac{1}{x}} d x+xe^{x+\frac{1}{x}} d x-\int\frac{d}{dx}(x)e^{x+\frac{1}{x}} d x\)
= \(\rm \int e^{x+\frac{1}{x}} d x+xe^{x+\frac{1}{x}} d x-\int e^{x+\frac{1}{x}} d x\) [∵ \(\rm \int \left(1-\frac{1}{x^2}\right) e^{x+\frac{1}{x}} d x = e^{x+\frac{1}{x}}\)]
= \(\rm x e^{x+\frac{1}{x}}+c \)
∴ The value of the integral is \(\rm x e^{x+\frac{1}{x}}+c\).
The correct answer is Option 2.
Integral Calculus Question 5:
The area bounded by the curve y = cos x, x = 0 and x = π is
Answer (Detailed Solution Below)
Integral Calculus Question 5 Detailed Solution
Calculation
Area = \(\int_{0}^{\pi} |\cos x| dx\)
cos x is positive from 0 to π/2 and negative from π/2 to π.
So, we split the integral:
Area = \(\int_{0}^{\frac{\pi}{2}} \cos x dx + \int_{\frac{\pi}{2}}^{\pi} (-\cos x) dx\)
Area = \(\left[ \sin x \right]_{0}^{\frac{\pi}{2}} - \left[ \sin x \right]_{\frac{\pi}{2}}^{\pi}\)
Area = \(\left( \sin \frac{\pi}{2} - \sin 0 \right) - \left( \sin \pi - \sin \frac{\pi}{2} \right)\)
Area = \((1 - 0) - (0 - 1)\)
Area = \(1 - (-1)\)
Area = \(1 + 1\)
Area = \(2\)
∴ The area bounded by the curve y = cos x, x = 0 and x = π is 2.
Hence option 1 is correct
Top Integral Calculus MCQ Objective Questions
What is \(\mathop \smallint \nolimits_0^1 {\rm{x}}{(1 - {\rm{x}})^9}{\rm{dx}}\) equal to?
Answer (Detailed Solution Below)
Integral Calculus Question 6 Detailed Solution
Download Solution PDFConcept:
Definite Integral properties:
\(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = \mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {{\rm{a}} + {\rm{b}} - {\rm{x}}} \right){\rm{\;dx}}\)
Calculation:
Let f(x) = x(1 – x)9
Now using property, \(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = \mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {{\rm{a}} + {\rm{b}} - {\rm{x}}} \right){\rm{\;dx}}\)
\(\mathop \smallint \nolimits_0^1 {\rm{x}}{(1 - {\rm{x}})^9}{\rm{dx}} = \mathop \smallint \limits_0^1 \left( {1 - {\rm{x}}} \right){\left\{ {1 - \left( {1 - {\rm{x}}} \right)} \right\}^9}{\rm{dx}}\)
\(⇒ \mathop \smallint \limits_0^1 \left( {1 - {\rm{x}}} \right){{\rm{x}}^9}{\rm{dx}}\)
\(⇒ \mathop \smallint \limits_0^1 \left( {{{\rm{x}}^9} - {{\rm{x}}^{10}}} \right){\rm{dx}}\)
\(⇒\left[ {\frac{{{{\rm{x}}^{10}}}}{{10}} - \frac{{{{\rm{x}}^{11}}}}{{11}}} \right]_0^1\)
⇒ 1/10 – 1/11
⇒ 1/110
∴ The value of integral \(\mathop \smallint \nolimits_0^1 {\rm{x}}{(1 - {\rm{x}})^9}{\rm{dx}}\) is 1/110.
What is \(\int_0^2 \rm \dfrac{dx}{x^2+4}\) equal to?
Answer (Detailed Solution Below)
Integral Calculus Question 7 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{dx}{x^2+a^2} = \frac{1}{a}\; \tan^{-1}(\frac{x}{a}) + c\)
Calculation:
Let I = \(\displaystyle\int_0^2 \rm \dfrac{dx}{x^2+4}\)
= \(\displaystyle\int_0^2 \rm \dfrac{dx}{x^2+2^2}\)
\(= \rm [\frac{1}{2}\; \tan^{-1}(\frac{x}{2})] _{0}^{2}\)
\(= \rm [\frac{1}{2}\; \tan^{-1}1 -\frac{1}{2}\; \tan^{-1}0 ]\)
\(= \rm \frac{1}{2}\times \frac{\pi}{4} - 0\)
= \(\rm \dfrac{\pi}{8}\)
What is the area of the parabola x2 = y bounded by the line y = 1?
Answer (Detailed Solution Below)
Integral Calculus Question 8 Detailed Solution
Download Solution PDFConcept:
The area under the curve y = f(x) between x = a and x = b, is given by:
Area = \(\rm\int_{a}^{b}ydx\)
Similarly, the area under the curve y = f(x) between y = a and y = b, is given by:
Area = \(\rm\int_{a}^{b}xdy\)
Calculation:
Here,
x2 = y and line y = 1 cut the parabola
∴ x2 = 1
⇒ x = 1 and -1
\( \text{Area =}\int_{-1}^{1} y d x \)
Here, the area is symmetric about the y-axis, we can find the area on one side and then multiply it by 2, we will get the area,
\( \text{Area}_1 = \int_{0}^{1} y d x \)
\( \text{Area}_1 = \int_{0}^{1} x^{2} dx \)
\(= \rm\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{3}\)
This area is between y = x2 and the positive x-axis.
To get the area of the shaded region, we have to subtract this area from the area of square i.e.
\((1 \times 1)-\frac{1}{3}=\frac{2}{3}\)
\(Total\;Area=2\times{\frac{2}{3}} =\frac{4}{3}\) square units.
Find the value of \(\rm \int_0^1 x \sqrt{x^2 + 4}\;dx\)
Answer (Detailed Solution Below)
Integral Calculus Question 9 Detailed Solution
Download Solution PDFConcept:
\(\rm \int x^n dx = \frac{x^{n+1}}{n+1}+c\)
Calculation:
I = \(\rm \int_0^1 x \sqrt{x^2 + 4}\;dx\)
Let x2 + 4 = t
Differentiating with respect to x, we get
⇒ 2xdx = dt
⇒ xdx = \(\rm \frac {dt}{2}\)
x | 0 | 1 |
t | 4 | 5 |
Now,
I = \(\rm \frac{1}{2}\int_4^5 \sqrt{t}\;dt\)
= \(\rm \frac{1}{2} \left[\frac{t^{3/2}}{\frac{3}{2}} \right ]_4^5\)
= \(\rm \frac{1}{3} \left[5^{3/2} - 4^{3/2} \right ]\)
= \(\rm \frac{1}{3}[5\sqrt 5 - 8]\)
Evaluate \(\rm \int cos^2 x\;dx\)
Answer (Detailed Solution Below)
Integral Calculus Question 10 Detailed Solution
Download Solution PDFConcept:
1 + cos 2x = 2cos2 x
1 - cos 2x = 2sin2 x
\(\rm \int \cos x\;dx = \sin x + c\)
Calculation:
I = \(\rm \int cos^2 x\;dx\)
= \(\rm \int \frac{1+\cos 2x}{2}\;dx\)
= \(\rm \frac{1}{2}\int (1+\cos 2x)\;dx\)
= \(\rm \frac{1}{2} \left[x+\frac{\sin 2x}{2} \right ] + c\)
= \(\rm \frac{x}{2}+\frac{\sin 2x}{4} + c\)
\(\rm \int _{0}^{2\pi} \frac{\sin 2x}{a -b\cos x}dx\) is equal to ?
Answer (Detailed Solution Below)
Integral Calculus Question 11 Detailed Solution
Download Solution PDFConcept:
\(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {{\rm{a}} + {\rm{b}} - {\rm{x}}} \right){\rm{dx}}\)
Calculation:
Let I = \(\rm \int _{0}^{2π} \frac{\sin 2x}{a -b\cos x}dx\) ----(1)
Using property f(a + b – x),
I = \(\rm \int _{0}^{2π} \frac{\sin 2(2π -x)}{a -b\cos (2π -x) }dx\)
As we know, sin (2π - x) = - sin x and cos (2π - x) = cos x
I = \(\rm \int _{0}^{2π} \frac{-\sin 2x}{a -b\cos x}dx\) ----(2)
I = -I
2I = 0
∴ I = 0
Evaluate \(\rm \int_{1}^{\infty} \frac{4}{x^4}dx\)
Answer (Detailed Solution Below)
Integral Calculus Question 12 Detailed Solution
Download Solution PDFConcept:
\(\rm \int x^n dx = \frac{x^{n+1}}{n+1}+c\)
Calculation:
I = \(\rm \int_{1}^{\infty} \frac{4}{x^4}dx\)
= \(\rm \int_{1}^{\infty}4{x^{-4}}dx\)
= \(\rm \left[\frac{4x^{-3}}{-3} \right ]_1^{\infty}\)
= \(\rm \frac{-4}{3}\left[\frac{1}{x^3} \right ]_1^{\infty}\)
= \(\rm \frac{-4}{3}\left[\frac{1}{\infty} - \frac{1}{1}\right ]\)
= \(\rm \frac{-4}{3}[0-1]\)
= \(\frac 4 3\)
The value of the integral \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\) is
Answer (Detailed Solution Below)
Integral Calculus Question 13 Detailed Solution
Download Solution PDFConcept:
\(\rm \displaystyle\int_{a}^{b} f(x) dx = \displaystyle\int_{a}^{b} f(a+b-x) dx\)
Calculations:
Consider, I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\) ....(1)
I = \(\rm \displaystyle\int_{0}^{\pi/2} \dfrac{\sqrt{\sin (\dfrac{\pi}{2}-x)}}{\sqrt{\sin (\dfrac{\pi}{2}-x)}+ \sqrt{\cos (\dfrac{\pi}{2}-x)}}dx\)
I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\cos x}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx\) ....(2)
Adding (1) and (2), we have
2I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\cos x}+ \sqrt{sinx}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx\)
2I = \(\rm \displaystyle\int_0^{\pi/2}dx\)
2I = \(\rm[x]^\frac{\pi}{2}_0\)
I = \(\dfrac{\pi}{4}\)
The area of the region bounded by the curve y = \(\rm \sqrt{16-x^2}\) and x-axis is
Answer (Detailed Solution Below)
Integral Calculus Question 14 Detailed Solution
Download Solution PDFConcept:
\(\int√{a^2-x^2}\;dx=\frac{x}{2} {√{x^2-a^2}}+\frac{a^2}{2}sin^{-1}\frac{x}{a}+c\)
Function y = √f(x) is defined for f(x) ≥ 0. Therefore y can not be negative.
Calculation:
Given:
y = \(\rm √{16-x^2}\) and x-axis
At x-axis, y will be zero
y = \(\rm √{16-x^2}\)
⇒ 0 = \(\rm √{16-x^2}\)
⇒ 16 - x2 = 0
⇒ x2 = 16
∴ x = ± 4
So, the intersection points are (4, 0) and (−4, 0)
Since the curve is y = \(\rm √{16-x^2}\)
So, y ≥ o [always]
So, we will take the circular part which is above the x-axis
Area of the curve, A \(\rm =\int_{-4}^{4}√{16-x^2}\;dx\)
We know that,
\(\int√{a^2-x^2}\;dx=\frac{x}{2} {√{x^2-a^2}}+\frac{a^2}{2}sin^{-1}\frac{x}{a}+c\)
= \( \rm [ \frac x 2 √{(4^2- x^2) }+ \frac {16}{2}sin^{-1} \frac x4]_{-4}^{4 }\)
= \( \rm [ \frac x 2 √{(4^2- 4^2) }+ \frac {16}{2}sin^{-1} \frac 44]- \rm [ \frac x 2 √{(4^2- (-4)^2) }+ \frac {16}{2}sin^{-1} \frac {4}{-4})]\)
= 8 sin-1 (1) + 8 sin-1 (1)
= 16 sin-1 (1)
= 16 × π/2
= 8π sq units
\(\rm \int \frac {1}{\sqrt{16-25x^2}}dx\) is equal to ?
Answer (Detailed Solution Below)
Integral Calculus Question 15 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{1}{\sqrt{a^2-x^2}}dx= \sin^{-1 } \left(\frac{x}{a} \right ) + c\)
Calculation:
I = \(\rm \int \frac {1}{\sqrt{16-25x^2}}dx\)
= \(\rm \int \frac {1}{\sqrt{16-(5x)^2}}dx\)
Let 5x = t
Differentiating with respect to x, we get
⇒ 5dx = dt
⇒ dx = \(\rm \frac {dt}{5}\)
Now,
I = \(\rm \frac {1}{5}\int \frac {1}{\sqrt{4^2-t^2}} dt\)
= \(\rm \frac 1 5 \sin^{-1} \left(\frac t 4 \right)\) + c
= \(\rm \frac 1 5 \sin^{-1} \left(\frac {5x} {4} \right)\) + c