Evaluate using Substitution MCQ Quiz in বাংলা - Objective Question with Answer for Evaluate using Substitution - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 18, 2025

পাওয়া Evaluate using Substitution उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Evaluate using Substitution MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Evaluate using Substitution MCQ Objective Questions

Top Evaluate using Substitution MCQ Objective Questions

Evaluate using Substitution Question 1:

\(\displaystyle \int_0^1 \frac{\log (1+x)}{1+x^2}dx\) is equal to

  1. \(\frac{\pi}{8}\)
  2. \(\frac{\pi}{8}\log 2\)
  3. log 2
  4. \(\frac{\pi}{8}\log_e10\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{\pi}{8}\log 2\)

Evaluate using Substitution Question 1 Detailed Solution

Formula used:

 
  • \(\int_{0}^{a}f(x)dx=\int_{0}^{a}f(a-x)dx\)
  • 1 + tan2θ = sec2θ 
  • \(tan(A-B)=\frac{tan\ A-tan\ B}{1+tan\ A\times tan\ B}\)
  • log(m/n) = log m - log n
  • \(\int x^ndx = \frac{x^{n+1}}{n+1}+C\)

 

Calculation:

Let,

\(I=\displaystyle \int_0^1 \frac{\log (1+x)}{1+x^2}dx\)

Put x = tan θ

⇒ dx = sec2θ dθ 

When x = 0 then θ = 0

When x = 1 then θ = π/4 

\(\Rightarrow I=\displaystyle \int_0^{\frac{π}{4}} \frac{\log (1+tan\ θ)}{1+\tan^2θ}sec^2θ \ dθ\)

\(\Rightarrow I=\displaystyle \int_0^{\frac{π}{4}} \frac{\log (1+tan\ θ)}{sec^2θ}sec^2θ \ dθ\)

\(\Rightarrow I=\displaystyle \int_0^{\frac{π}{4}} {\log (1+tan\ θ)} \ dθ\)    ----(1)

Using the property

\(\int_{0}^{a}f(x)dx=n\int_{0}^{a}f(a-x)dx\)

\(\Rightarrow I=\displaystyle \int_0^{\frac{π}{4}} {\log (1+tan\ (π/4 - θ))} \ dθ\)

\(\Rightarrow I=\displaystyle \int_0^{\frac{π}{4}} {\log (1+\frac{\ tan\frac{π}{4} - tanθ}{1+tan\frac{π}{4} \times tanθ}}) \ dθ\)

\(\Rightarrow I=\displaystyle \int_0^{\frac{π}{4}} {\log (1+\frac{1 - tanθ}{1+1 \times tanθ}}) \ dθ\)     [∵ tan(π/4) = 1]

\(\Rightarrow I=\displaystyle \int_0^{\frac{π}{4}} {\log (\frac{1 + tan \ \theta+ 1 - tanθ}{1+ tanθ}}) \ dθ\)

\(\Rightarrow I=\displaystyle \int_0^{\frac{π}{4}} {\log (\frac{2}{1+ tanθ}} )\ dθ\)    

\(\Rightarrow I=\displaystyle \int_0^{\frac{π}{4}} {\log {2}-log({1+ tanθ}} )\ dθ\)

\(\Rightarrow I=\displaystyle \int_0^{\frac{π}{4}} {\log {2}-\displaystyle \int_0^{\frac{π}{4}}log({1+ tanθ}} )\ dθ\)

Using the equation (1)

\(\Rightarrow I=\displaystyle \int_0^{\frac{π}{4}} {\log {2}}\ dθ-I\)

\(\Rightarrow 2I=\log {2}\displaystyle \int_0^{\frac{π}{4}} {}dθ\)

\(\Rightarrow 2I=\log {2}\times (θ)_0^{\frac{π}{4}} \)

\(\Rightarrow 2I=\log {2}\times {\frac{π}{4}} \)

\(\therefore I={\frac{π}{8}} \log {2} \)

Evaluate using Substitution Question 2:

Evaluate:

\(\rm \int_1^4{\ln x\over x}dx\)

  1. \(\rm 3\over4\)
  2. \(\rm 1\over 4\)
  3. \(\rm {(\ln 4)^2\over 2}\)
  4. \(\rm \ln 4\)

Answer (Detailed Solution Below)

Option 3 : \(\rm {(\ln 4)^2\over 2}\)

Evaluate using Substitution Question 2 Detailed Solution

Concept:

Integral property:

  • ∫ xn dx = \(\rm x^{n+1}\over n+1\)+ C ; n ≠ -1
  • \(\rm∫ {1\over x} dx = \ln x\) + C
  • ∫ edx = ex+ C
  • ∫ adx = (ax/ln a) + C ; a > 0,  a ≠ 1
  • ∫ sin x dx = - cos x + C
  • ∫ cos x dx = sin x + C

Substitution method: If the function cannot be integrated directly substitution method is used. To integration by substitution is used in the following steps:

  • A new variable is to be chosen, say “t”
  • The value of dt is to be determined.
  • Substitution is done and the integral function is then integrated.
  • Finally, the initial variable t, to be returned.

 

Calculation:

I = \(\rm \int{\ln x\over x}dx\)

Let ln x = t ⇒\(\rm1\over x\)dx = dt

I = \(\rm \int{t}dt\)

I = \(\rm {t^2\over 2}\)

I = \(\rm {(\ln x)^2}\)

Putting the limits 

I = \(\frac{1}{2} \times \rm \left[(\ln x)^2\right]_1^4\)

I = \(\frac{1}{2} \times \rm \left[(\ln 4)^2- (\ln 1)^2\right]\)

I = \(\frac{1}{2} \times \rm (\ln 4)^2 = {({ln \ 4})^2\over 2} \)

Evaluate using Substitution Question 3:

\(\rm \int_0^{\frac{\pi}{4}}\sin^3 \theta\ d\theta=?\)

  1. \(\rm \frac{2}{3}-\frac{5}{6\sqrt2}\)
  2. \(\rm- \frac{2}{3}+\frac{5}{6\sqrt2}\)
  3. \(\rm \frac{2}{3}+\frac{5}{6\sqrt2}\)
  4. \(\rm- \frac{2}{3}-\frac{5}{6\sqrt2}\)

Answer (Detailed Solution Below)

Option 1 : \(\rm \frac{2}{3}-\frac{5}{6\sqrt2}\)

Evaluate using Substitution Question 3 Detailed Solution

Calculation:

Let I = \(\rm \int_0^{\frac{π}{4}}\sin^3 θ\ dθ\)

⇒ I = \(\rm \int_0^{\frac{π}{4}}\sin^2 θ.\sin θ\ dθ\)

⇒ I = \(\rm \int_0^{\frac{π}{4}}(1 -\cos^2 θ).\sin θ\ dθ\)

Let cos θ = u → -sin θ dθ = du

and when θ = 0, u = 1 and when θ = π/4, u = 1/√2

So by substituting these values in I,

⇒ I = \(\rm \int_1^{\frac{1}{\sqrt 2}}(1 -u^2).(-du)\)

⇒ I = \(\rm \int_1^{\frac{1}{\sqrt 2}}(u^2-1)du\)

⇒ I = \(\rm ({u^3 \over 3} - u)|_1^{\frac{1}{\sqrt 2}}\)

⇒ I = \(\rm ({1\over 3}\times{1 \over 2\sqrt 2} - {1 \over \sqrt 2} )- ({1\over 3} - 1)\)

⇒ I = \(\rm \frac{2}{3}-\frac{5}{6\sqrt2}\)

∴ The correct option is (1).

Evaluate using Substitution Question 4:

The value of \(\displaystyle \int_0^1\frac{2x^2+3x+3}{(x+1)(x^2+2x+2)}dx\)

I. \(\frac{\pi}{4}+2 \log 2-\tan^{-1} 2\)

II. \(-\frac{\pi}{4}+ \log 4-\cot^{-1} 2\)

III. 2 log 2 - cot-1 3

Which of the above statement(s) is/are correct?

  1. I and II
  2. II and III
  3. I and III
  4. I, II and III

Answer (Detailed Solution Below)

Option 3 : I and III

Evaluate using Substitution Question 4 Detailed Solution

Concept:

Formulae

  • tan-1+ cot-1x =  \(\frac{\pi}{2}\) 
  • \(tan^{-1}\frac{1}{x}=cot^{-1}x\)
  • tan-1x - tan-1y = \(tan^{-1}(\frac{x-y}{1+x\times y})\)
  • \(\displaystyle \int\frac {1}{(x^2 + 1)} dx=tan^{-1}x + c\)

Calculation:

Let I = \(\displaystyle \int_0^1\frac{2x^2+3x+3}{(x+1)(x^2+2x+2)}dx \)

⇒ I = \(\displaystyle \int_0^1\frac{2(x^2+2x+2)-(x + 1)}{(x+1)(x^2+2x+2)}dx \)

⇒ I = \(\displaystyle \int_0^1\frac {2}{(x + 1)} - \frac{1}{(x^2+2x+1+1)}dx \)

⇒ I = \(\displaystyle 2 \int_0^1\frac {1}{(x + 1)} dx- \int_0^1 \frac{1}{(x+1)^2+1}dx \)

⇒ I = \(2\left[ln ∣ x+1∣\right]_0^1-\left[tan^{-1}(x+1)\right]_0^1 \)

⇒ I = 2(ln 2 - ln 1) - (tan-12 - tan-11)      ------(i)

I = ln 22 - tan-12 + \(\frac{\pi}{4}\)

So, Statement I is correct.

⇒ I = ln 4 - tan-12 + \(\frac{\pi}{4}\)

As tan-12 + cot-12 =  \(\frac{\pi}{2}\) ⇒ tan-12 = \(\frac{\pi}{2}\) - cot-12

⇒ I = ln 4 - (\(\frac{\pi}{2}\) - cot-12) + \(\frac{\pi}{4}\)

⇒ I = ln 4 + cot-12 - \(\frac{\pi}{4}\)

So, Statement II is incorrect.

Again from Equation (i), we have 

I = 2(ln 2 - ln 1) - (tan-12 - tan-11)

⇒ I = 2 ln 2 - \(tan^{-1}(\frac{2-1}{1+2\times1})\)

⇒ I = 2 ln 2 - \(tan^{-1}\frac{1}{3}\)

I = 2 ln 2 - cot-13

So, Statement III is correct

∴ Statement I and Statement III are correct.

Evaluate using Substitution Question 5:

Comprehension:

Direction: Using integral

\(\displaystyle \int_0^{\pi/2}\log (\sin x)\:dx=-\displaystyle \int_0^{\pi}\log(\sec x)\:dx=\frac{-\pi}{2}\ log 2\)

and \(\displaystyle \int_0^{\pi/2}\log (\tan x)\:dx= 0\)

and \(\displaystyle \int_0^{\pi/4}\log (1+ \tan x)\:dx=\frac{\pi}{8}\log 2\)

Evaluate \(\displaystyle \int_{-\pi/4}^{\pi/4}\log(\sin x+\cos x)\:dx.\)

  1. \(\frac{\pi \log 2}{2}\)
  2. \(\frac{-\pi \log 2}{4}\)
  3. π log 2
  4. 0

Answer (Detailed Solution Below)

Option 2 : \(\frac{-\pi \log 2}{4}\)

Evaluate using Substitution Question 5 Detailed Solution

Given :

\(\displaystyle \int_{-π/4}^{π/4}\log(\sin x+\cos x)\:dx.\)

Formula used : 

f(x) is continuous function in [-a, a]

\(\int _{-a}^{a}f(x) dx= \int _{0}^{a}[f(x)+ f(-x)] dx\)      ----- (1)

log m + log n = log (mn)        ----- (2)

\(\int_{0}^{\pi/2}log \ sin\ x dx= \int_{0}^{\pi/2}log \ cos\ x dx= \frac{-\pi}{2}log 2\)       ----- (3)

Calculations :

Let I = \(\displaystyle \int_{-π/4}^{π/4}\log(\sin x+\cos x)\:dx.\)

Using equation (1)

⇒ \(\displaystyle \int_{0}^{π/4}\log((sin \ x+ cos\ x) + log (sin (-x) + cos (-x))dx \)

⇒ \(\displaystyle \int_{0}^{π/4}\log((sin \ x+ cos\ x) + log (cos \ x - sin \ x))dx \)

Using equation (2)

⇒ \(\displaystyle \int_{0}^{π/4}\log(cos^2x-sin^2x)dx\)

⇒ \(\displaystyle \int_{0}^{π/4}\log(cos \ 2 x)dx\)

Let, t = 2x, differentiating both sides we get

⇒ dt/2 = dx

Put value of x = 0 then t = 0 and x = π/4 then t = π/2

Limit is changed to [ 0 to π/2]

⇒ \(\displaystyle \int_{0}^{π/2}\log(cos \ t)dt\)

Using equation (3)

⇒ \(\frac{1}{2}.[-\frac{\pi}{2}\log2]\)

∴ The value of \(\displaystyle \int_{-\pi/4}^{\pi/4}\log(\sin x+\cos x)\:dx = -\frac{\pi}{4}log \ 2\)

Evaluate using Substitution Question 6:

What is \(\rm \displaystyle\int_0^1 \frac{{{e^{{{\tan }^{ - 1}}x}}dx}}{{1 + {x^2}}}\) equal to ?

  1. \({e^{\frac{\pi }{4}}} - 1\)
  2. \({e^{\frac{\pi }{4}}} + 1\)
  3.  \({e^{\frac{\pi }{2}}} + 1\)
  4. e
  5. e – 1

Answer (Detailed Solution Below)

Option 1 : \({e^{\frac{\pi }{4}}} - 1\)

Evaluate using Substitution Question 6 Detailed Solution

Concept:

Integral Property:

\(\rm \displaystyle\int e^{x}\;dx = e^{x} + c\)

Calculation:

\(\rm I = \displaystyle \int\limits_{0}^{1}{\frac{e^{\tan^{-1}x}dx}{1+x^{2}}}\)

Let tan-1 x = t

Differentiating both sides, we get

\(⇒\rm \frac{dx}{1+x^{2}} = dt\)

\(\rm I = \displaystyle\int\limits_{0}^{\frac{π}{4}} e^{t}dt\)

\(\rm ⇒ I = [{e^{t}}]_{0}^{\frac{π}{4}}\)

\(\rm \Rightarrow I = e^{\frac{\pi}{4}} - e^0\)

\(\rm \Rightarrow I = e^{\frac{\pi}{4}} - 1\)

Evaluate using Substitution Question 7:

\(\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} {\cos ^2}{\rm{x}}\sin 2{\rm{xdx}}\)  is equal to?

  1. 1/3
  2. 1/4
  3. -1/2
  4. 1/2
  5. 1/6

Answer (Detailed Solution Below)

Option 4 : 1/2

Evaluate using Substitution Question 7 Detailed Solution

Concept:

\(\smallint {\rm{xdx}} = \frac{{{{\rm{x}}^2}}}{2} + {\rm{c}}\)

Property of definite integrals:  \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = - \mathop \smallint \nolimits_{\rm{b}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx\;}}\)

Calculation:

I = \(\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} {\cos ^2}{\rm{x}}\sin 2{\rm{xdx}}\)

\( = \mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} {\cos ^2}{\rm{x}}\left( {2\sin {\rm{x}}\cos {\rm{x}}} \right){\rm{dx}}\)        (∵ sin 2x = 2 sin x cos x)

\( = 2\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} {\cos ^3}{\rm{x}}\sin {\rm{xdx}}\)

Let cos x = t

⇒ -sin x dx = dt

∴ sin x dx = -dt

x

0

π/2

t

1

0

 

\( = 2\mathop \smallint \nolimits_1^0 {{\rm{t}}^3}\left( { - {\rm{dt}}} \right)\)

\( = 2\mathop \smallint \nolimits_0^1 {{\rm{t}}^3}{\rm{dt}}\)

\( = 2\left[ {\frac{{{{\rm{t}}^4}}}{4}} \right]_0^1\)

\( = {\rm{\;}}2\left( {\frac{1}{4}{\rm{\;}}-{\rm{\;}}0} \right) = \frac{1}{2}\)

Evaluate using Substitution Question 8:

Comprehension:

Direction: Using integral

\(\displaystyle \int_0^{\pi/2}\log (\sin x)\:dx=-\displaystyle \int_0^{\pi}\log(\sec x)\:dx=\frac{-\pi}{2}\ log 2\)

and \(\displaystyle \int_0^{\pi/2}\log (\tan x)\:dx= 0\)

and \(\displaystyle \int_0^{\pi/4}\log (1+ \tan x)\:dx=\frac{\pi}{8}\log 2\)

Evaluate \(\displaystyle \int_{-\pi/4}^{\pi/4}\log \left(\frac{\sin x+\cos x}{\cos x-\sin x}\right)\:dx.\)

  1. π log 2
  2. \(\frac{\pi \log 2}{2}\)
  3. 0
  4. -π log 2

Answer (Detailed Solution Below)

Option 3 : 0

Evaluate using Substitution Question 8 Detailed Solution

Concept:

  • \(\displaystyle \int_{a}^{b}f (t) \ dt = -\int_{b}^{a}f (t) \ dt\)
  • Substitution method, 

             If we put x = t, then dx = dt and,

             \(\displaystyle \int_{a(x)}^{b(x)}f (x) \ dx = \int_{a(t)}^{b(t)}f (t) \ dt\)

Calculation:

Let I =\(\displaystyle \int_{-π/4}^{π/4}\log \left(\frac{\sin x+\cos x}{\cos x-\sin x}\right)\:dx.\)

Dividing by cos x in numerator and denominator,

⇒ I \(\displaystyle \int_{-π/4}^{π/4}\log \left(\frac{\tan x+1}{ 1-\tan x}\right)\:dx\)

⇒ I \(\displaystyle \int_{-π/4}^{π/4}\log \left(\frac{\tan x+tan (π/4)}{ 1-\tan (π/4).tan x}\right)\:dx\)

⇒ I \(\displaystyle \int_{-π/4}^{π/4}\log \left({\tan ({π \over 4} + x)}\right)\:dx\)

Put \({π \over 4}+x = t\)

⇒ dx = dt and 

when x = - π/4 then t = 0

when x = π/4 then t = π/2

⇒ I \(\displaystyle \int_{0}^{\pi/2}\log \left({\tan (t)}\right)\:(dt)\)

⇒ I = \(\displaystyle \int_{0}^{π/2}\log \left({\tan \ t}\right)\:dt\)

⇒ I = 0 (using the formula in comprehension)

∴ The correct answer is an option (3).

Evaluate using Substitution Question 9:

The correct evaluation of \(\int\limits_0^{\frac{\pi }{2}} {\sin x\,\sin 2x} \) is 

  1. 4/3
  2. 1/3
  3. 3/4
  4. 2/3

Answer (Detailed Solution Below)

Option 4 : 2/3

Evaluate using Substitution Question 9 Detailed Solution

Given, I = \(\int\limits_0^{\frac{π }{2}} {\sin x\,\sin 2x} \ dx\)

⇒ I = \(\int\limits_0^{\frac{π }{2}} {\sin x\,2\sin x \cos x} \ dx\)  { ∵ sin 2x = 2 sin x cos x}

⇒ I = \(2\int\limits_0^{\frac{π }{2}} {\sin^2 x\, \cos x} \ dx\) 

Put sin x = t → cos x dx  = dt

when x = 0, t = sin 0 = 0 and when x = π/2, t = sin π/2 = 1

⇒ I = \(2\int\limits_0^1{t^2 }dt\) = \({2t^3 \over 3} |_0^1\)

⇒ I = 2/3

∴ The correct answer is option (4).

Evaluate using Substitution Question 10:

\(\int\limits_0^{\frac{\pi }{4}} {\frac{{\sin x + \cos x}}{{9 + 16\sin 2x}}} \,dx = \)

  1. \(\frac{1}{{20}}\log 3\)
  2. log 3
  3. \(\frac{1}{{20}}\log 5\)
  4. None of these 

Answer (Detailed Solution Below)

Option 1 : \(\frac{1}{{20}}\log 3\)

Evaluate using Substitution Question 10 Detailed Solution

Concept:

  • sin 2x = 2 sin x cos x
  • sin2x + cos2x = 1
  • \(\int {dx \over a^2 -x^2} = {1 \over 2a} \log |{a +x \over a-x}| + C\)

Calculation:

Put sin x - cos x = t ⇒ (cos x + sin x) dx = dt

⇒ (sin x - cos x)2 = t2

⇒ sin2x + cos2x - 2sinx cos x = t2

⇒ 1 - sin 2x = t2

sin 2x = 1 - t2

And when x = 0 → t = sin 0 - cos 0 = - 1

when x = π/4 → t = sin (π/4) - cos (π/4) = 0 

⇒ \(I = \int\limits_{-1}^{0} {\frac{dt}{{9+16(1 - t^2)}}} \, \)

⇒ \(I = \int\limits_{-1}^{0} {\frac{dt}{{25 - 16t^2}}} \, \)

⇒ \(I = {1 \over 16} \int\limits_{-1}^{0} {\frac{dt}{{({5 \over4})^2 -t^2}}} \, \)

⇒ \(I = {1 \over 16} {4 \over 2(5)}\log \Big|{{5 \over4}+ t \over {5 \over 4} - t}\Big| _{-1}^0\)

⇒ \(I = {1 \over 40} \log \Big|{5+ 4t \over5 - 4t}\Big|_{-1}^0\)

⇒ \(I = {1 \over 40} \Big|\log ({5+ 0 \over5 - 0}) - \log ({5 -4 \over5 +4})\Big|\)

⇒ \(I = {1 \over 40} \Big|\log ({5\over5 }) - \log ({1 \over9})\Big|\)

⇒ \(I = {1 \over 40} ( \log 1 +\log 9)\)

⇒ \(I = {1 \over 40} ( \log 9)\)

⇒ \(I = {2 \over 40} \log 3 \)

⇒ \(I = {1 \over 20} \log 3 \)

∴ The correct answer is option (1).

Get Free Access Now
Hot Links: teen patti earning app teen patti joy apk teen patti rummy 51 bonus teen patti customer care number teen patti master downloadable content