Question
Download Solution PDFएक समद्विबाहु त्रिभुज की प्रत्येक बराबर भुजा और तीसरी भुजा की लंबाई का अनुपात 3 ∶ 5 है। यदि त्रिभुज का क्षेत्रफल \(30\sqrt{11}\) सेमी2 है, तो तीसरी भुजा की लंबाई (सेमी में) कितनी है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया गया है:
समद्विबाहु त्रिभुज की प्रत्येक बराबर भुजा की लंबाई (b) = 3x
एक समद्विबाहु त्रिभुज की असमान भुजा की लंबाई (a) = 5x
त्रिभुज का क्षेत्रफल = 30√11 सेमी2
प्रयुक्त सूत्र:
समद्विबाहु त्रिभुज का क्षेत्रफल = (a/4) × √{(4 × b2) - a2}
गणना:
समद्विबाहु त्रिभुज का क्षेत्रफल = (a/4) × √{(4 × b2) - a2}
⇒ 30 × √11 = (5x/4) × √{(4 × (3x)2) - (5x)2}
⇒ 30 × √11 = (5x/4) × √{(4 × 9x2) - 25x2}
⇒ 30 × √11 = (5x/4) × √{36x2 - 25x2}
⇒ 30 × √11 = (5x2/4) × √11
⇒ x2/4 = 6
⇒ x = √24 = 2√6
एक समद्विबाहु त्रिभुज की असमान भुजा की लंबाई (a) = 5x
⇒ 5 × 2√6 = 10√6 सेमी
∴ सही उत्तर 10√6 सेमी है।
Last updated on Jun 13, 2025
-> The SSC CGL Notification 2025 has been released on 9th June 2025 on the official website at ssc.gov.in.
-> The SSC CGL exam registration process is now open and will continue till 4th July 2025, so candidates must fill out the SSC CGL Application Form 2025 before the deadline.
-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.
-> The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.
-> Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.
-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.
-> The CGL Eligibility is a bachelor’s degree in any discipline.
-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.
-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.
-> Candidates should also use the SSC CGL previous year papers for a good revision.