Addition and Subtraction MCQ Quiz in తెలుగు - Objective Question with Answer for Addition and Subtraction - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Mar 16, 2025

పొందండి Addition and Subtraction సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Addition and Subtraction MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Addition and Subtraction MCQ Objective Questions

Top Addition and Subtraction MCQ Objective Questions

Addition and Subtraction Question 1:

If \(\rm 2\begin{bmatrix} 1 & 3\\ 0& \rm x \end{bmatrix}+\begin{bmatrix}\rm y& 0\\ 1&2 \end{bmatrix}=\begin{bmatrix} 5& 6\\ 1& 8\end{bmatrix}\), then the values of x and y are:

  1. x = 3, y = 3.
  2. x = -3, y = 3.
  3. x = 3, y = -3.
  4. x = -3, y = -3.

Answer (Detailed Solution Below)

Option 1 : x = 3, y = 3.

Addition and Subtraction Question 1 Detailed Solution

Given:

\(\rm 2\begin{bmatrix} 1 & 3\\ 0& \rm x \end{bmatrix}+\begin{bmatrix}\rm y& 0\\ 1&2 \end{bmatrix}=\begin{bmatrix} 5& 6\\ 1& 8\end{bmatrix}\)

Concept:

Matrices: If two matrices are equal, then their corresponding elements must also be equal.

 

Calculation:

\(\rm 2\begin{bmatrix} 1 & 3\\ 0& \rm x \end{bmatrix}+\begin{bmatrix}\rm y& 0\\ 1&2 \end{bmatrix}=\begin{bmatrix} 5& 6\\ 1& 8\end{bmatrix}\)

\(\rm \begin{bmatrix} 2 & 6\\ 0& \rm 2x \end{bmatrix}+\begin{bmatrix}\rm y& 0\\ 1&2 \end{bmatrix}=\begin{bmatrix} 5& 6\\ 1& 8\end{bmatrix}\)

\(\rm \begin{bmatrix} 2+\rm y & 6+0\\ 0+1& \rm 2x+2 \end{bmatrix}=\begin{bmatrix} 5& 6\\ 1& 8\end{bmatrix}\)

Since the matrices are equal, their corresponding elements must also be equal.

⇒ 2 + y = 5 and 2x + 2 = 8.

On solving the above equations, we get 

⇒ y = 3 and x = 3

∴ x = 3 and y = 3

Addition and Subtraction Question 2:

\(\)Let \(a \in \mathbf{R}\) and A be a matrix of order 3x3 such that det(A) = -4 and A + I = \(\begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \), where I is the identity matrix of order 3 x 3.
If det ((a + 1)adj((a–1)A)) is 2m3n, m, n \(\in\) {0,1,2,…..20}, then m + n is equal to : 

  1. 14
  2. 17
  3. 15
  4. 16

Answer (Detailed Solution Below)

Option 4 : 16

Addition and Subtraction Question 2 Detailed Solution

A +  I = \(\begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \)

⇒A = \(\begin{bmatrix} 0 & a & 1 \\ 2 & 0 & 0 \\ a & 1 & 1 \end{bmatrix} \)

.

det(A)0(0. − 0. 1)a. (2. 10. a)+1. (2. 10. a)

= - a. (2)+1. (2=22

Set equal to -4 -4" id="MathJax-Element-180-Frame" role="presentation" style="position: relative;" tabindex="0">-4 -4

⇒ 2=  -⟹ 23:

Also

det((a+1adj ((a1)A)=2m3n

  • For a 3 × 3 Matrix, det(adj)(B) = (det(B))2
  • For a scalar k det(kBk3det(B)

Let’s plug in values:

⇒ det((a1A(a1)3.det(A(31)3.(4)=23.(48.(432

⇒ det(adj(a - 1)A)) = (-32)2 = 1024

⇒ (a +1)3 = (3 + 1)= 64

⇒ det((a+1)adj((a−1)A)) = 64⋅1024 = 65536

Thus, 65536 = 21630

⇒ Then m = 16,n = 0

⇒ m + n  = 16 + 0 = 16

Addition and Subtraction Question 3:

If x + 2y = \(\begin{bmatrix} 2 & -3\\ 1 & 5 \end{bmatrix}\)and 2x + 5y = \(\begin{bmatrix} 7 & 5\\ 2 & 3 \end{bmatrix}\), then y is equal to ?

  1. \( \begin{bmatrix} 3 & 11\\ 0 & 7 \end{bmatrix}\)
  2. \( \begin{bmatrix} 3 & 5\\ 0 & -7 \end{bmatrix}\)
  3. \( \begin{bmatrix} 3 & 11\\ 0 & -7 \end{bmatrix}\)
  4. \( \begin{bmatrix} 3 & 5\\ 0 &7 \end{bmatrix}\)
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : \( \begin{bmatrix} 3 & 11\\ 0 & -7 \end{bmatrix}\)

Addition and Subtraction Question 3 Detailed Solution

Calculation:

Given:

x + 2y = \(\begin{bmatrix} 2 & -3\\ 1 & 5 \end{bmatrix}\)                    .... (1)

2x + 5y = \(\begin{bmatrix} 7 & 5\\ 2 & 3 \end{bmatrix}\)                     .... (2)

Multiplying by 2 in the equation (1), we get

⇒ 2x + 4y = \(\begin{bmatrix} 4 & -6\\ 2 & 10 \end{bmatrix}\)             .... (3)

Subtracting equation (3) from equation (2), we get

⇒ (2x + 5y) - (2x + 4y) = \(\begin{bmatrix} 7 & 5\\ 2 & 3 \end{bmatrix}-\begin{bmatrix} 4 & -6\\ 2 & 10 \end{bmatrix}\)

∴ y = \( \begin{bmatrix} 3 & 11\\ 0 & -7 \end{bmatrix}\)

 

Addition and Subtraction Question 4:

If \(P = \begin{bmatrix} \dfrac {\sqrt {3}}{2}& \dfrac {1}{2}\ -\dfrac {1}{2} & \dfrac {\sqrt {3}}{2}\end{bmatrix}, A = \begin{bmatrix} 1& 1\ 0 &1 \end{bmatrix}\) and \(Q = PAP^{T}\), then \(P^{T}Q^{2015} P\) is:

  1. \(\begin{bmatrix} 0& 2015\ 0 &0 \end{bmatrix}\)
  2. \(\begin{bmatrix} 2015& 0 \ 1 & 2015 \end{bmatrix}\)
  3. \(\begin{bmatrix} 2015& 1 \ 0 & 2015 \end{bmatrix}\)
  4. \(\begin{bmatrix} 1& 2015 \ 0 & 1 \end{bmatrix}\)

Answer (Detailed Solution Below)

Option 4 : \(\begin{bmatrix} 1& 2015 \ 0 & 1 \end{bmatrix}\)

Addition and Subtraction Question 4 Detailed Solution

\(P^T=\begin{bmatrix} \cfrac { \sqrt { 3 } }{ 2 } & \cfrac { 1 }{ 2 } \ \cfrac { -1 }{ 2 } & \cfrac { \sqrt { 3 } }{ 2 } \end{bmatrix}\)

\(P^TP= \begin{bmatrix} \cfrac { \sqrt { 3 } }{ 2 } & \cfrac { -1 }{ 2 } \ \cfrac { 1 }{ 2 } & \cfrac { \sqrt { 3 } }{ 2 } \end{bmatrix}\begin{bmatrix} \cfrac { \sqrt { 3 } }{ 2 } & \cfrac { 1 }{ 2 } \ \cfrac { -1 }{ 2 } & \cfrac { \sqrt { 3 } }{ 2 } \end{bmatrix}=\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}=I\)

\(Q = PAP^{T}\)

\(P^{T}Q^{2015} P=P^T\cdot Q \cdot Q \cdot Q \cdot Q........Q\cdot P\)

\(=P^T(PAP^T)(PAP^T)........P\)

\((P^TP)A(P^TP)A(P^TP)........P=A^{2015}\)

\(A^2=\begin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix}\)

\(A^3=\begin{bmatrix} 1 & 3 \ 0 & 1 \end{bmatrix}\)

\(A^{2015}=\begin{bmatrix} 1 & 2015 \ 0 & 1 \end{bmatrix}\)

Addition and Subtraction Question 5:

If matrix \(A=\begin{bmatrix} 1 & 2 \ 4 & 3 \end{bmatrix}\) such that \(Ax=I\), then \(x=\)................

  1. \(\cfrac { 1 }{ 5 } \begin{bmatrix} 1 & 3 \ 2 & -1 \end{bmatrix}\)
  2. \(\cfrac { 1 }{ 5 } \begin{bmatrix} 4 & 2 \ 4 & -1 \end{bmatrix}\)
  3. \(\cfrac { 1 }{ 5 } \begin{bmatrix} -3 & 2 \ 4 & -1 \end{bmatrix}\)
  4. \(\cfrac { 1 }{ 5 } \begin{bmatrix} -1 & 2 \ -1 & 4 \end{bmatrix}\)

Answer (Detailed Solution Below)

Option 3 : \(\cfrac { 1 }{ 5 } \begin{bmatrix} -3 & 2 \ 4 & -1 \end{bmatrix}\)

Addition and Subtraction Question 5 Detailed Solution

Given : \(A=\begin{bmatrix} 1 & 2 \ 4 & 3 \end{bmatrix}\) such that \(Ax=I\) ... \((i)\)

Since, \(A\) and \(I\) are of order \(2\times 2\). So, \(x\) will be a matrix of order \(2\times 2\)

Let \(x=\begin{bmatrix} a & b \ c & d \end{bmatrix}\)

From \((i)\), we get

\(Ax=I\)

\(\implies \begin{bmatrix} 1 & 2 \ 4 & 3 \end{bmatrix} \begin{bmatrix} a & b \ c & d \end{bmatrix}=\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}\)

\(\implies \begin{bmatrix} a+2c & b+2d \ 4a+3c & 4b+3d \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}\)

\(\implies a+2c=1\) ...... \((ii)\), \(4a+3c=0\) ........ \((iii)\)

\(b+2d=0\) ....... \((iv)\) and \(4b+3d=1\) ....... \((v)\)

Solving \((ii)\) and \((iii)\) simultaneously we get

\(a=-\dfrac{3}{5}\) and \(c=\dfrac{4}{5}\)

Then solving \((iv)\) and \((v)\) simultaneously we get

\(b=\dfrac{2}{5}\) and \(d=-\dfrac{1}{5}\)

Substituting all these values in \(x\), we get

\(x=\begin{bmatrix} -\dfrac{3}{5} & \dfrac{2}{5} \ \dfrac{4}{5} & -\dfrac{1}{5} \end{bmatrix}\)

\(\therefore x=\dfrac{1}{5} \begin{bmatrix} -3 & 2 \ 4 & -1 \end{bmatrix}\)

Addition and Subtraction Question 6:

If \(A=\begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 5 \\ 1 & 2 & 1 \end{bmatrix}\), then \(\quad { a }_{ 11 }{ A }_{ 21 }+{ a }_{ 12 }{ A }_{ 22 }+{ a }_{ 13 }{ A }_{ 23 }=\).......

  1. \(1\)
  2. \(0\)
  3. \(-1\)
  4. \(2\)

Answer (Detailed Solution Below)

Option 2 : \(0\)

Addition and Subtraction Question 6 Detailed Solution

Calculation

Here, \(a_{ij}\) stands for element of \(A\) with \(i^{th}\) row and \(j^{th}\) column. Also, \(A_{ij}\) stands for co-factor of \(a_{ij}\) of matrix \(A\)

So, we get \(a_{11}=1, a_{12}=1\) and \(a_{13}=0\)

To find the co-factor

\(A_{21}=(-1)^{2+1}\begin{vmatrix} 1 & 0 \\ 2 & 1\end{vmatrix}=(-1)(1-0)=-1\)

\(A_{22}=(-1)^{2+2}\begin{vmatrix} 1 & 0 \\ 1 & 1\end{vmatrix}=(-1)^{4}(1-0)=1\)

\(A_{23}=(-1)^{2+3}\begin{vmatrix} 1 & 1 \\ 1 & 2\end{vmatrix}=(-1)^{5}(2-1)=-1\)

\(\therefore a_{11}A_{21} + a_{12}A_{22} +a_{13}A_{23}=1(-1)+1(1)+0(-1)=0\)

Hence option 2 is correct

Addition and Subtraction Question 7:

If  \(f(x) = \left[ {\begin{array}{*{20}{c}} x&λ \\ {2λ }&x \end{array}} \right]\;\) then |f(λx) - f(x)| is equal to ? 

  1. \(x({\lambda ^2} - 1)\)
  2. \({\lambda ^{^2}}({x^2} - 1)\)
  3. \(\lambda ({x^2} - 1)\)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 5 : None of the above

Addition and Subtraction Question 7 Detailed Solution

Concept:

Conditions for the subtraction of matrices:

Two matrices should be of the same order (number of rows = number of columns).

Add the corresponding element of other matrices.

Calculation:

Given:

\(f(x) = \left[ {\begin{array}{*{20}{c}} x&λ \\ {2λ }&x \end{array}} \right]\)

\(\Rightarrow f(λ x) = \left[ {\begin{array}{*{20}{c}} {λ x}&λ \\ {2λ }&{λ x} \end{array}} \right]\)

\(f(λ x) - f(x) = \left[ {\begin{array}{*{20}{c}} λ x &λ \\ {2λ }&{λ x} \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} x&λ \\ {2λ }&x \end{array}} \right]\)

\(f(λ x) - f(x) = \left[ {\begin{array}{*{20}{c}} λ x -x &0\\ {0 }&{λ x - x} \end{array}} \right] \)

|f(λx) - f(x)| = (λx - x)2

|f(λx) - f(x)| = x2(λ - 1)2

Addition and Subtraction Question 8:

If A and B are square matrices of order n × n, then (A - B)2 is equal to?

  1. A2 - B2
  2. A2 - 2AB + B2
  3. A2 - AB - BA + B2
  4. More than one of the above

Answer (Detailed Solution Below)

Option 3 : A2 - AB - BA + B2

Addition and Subtraction Question 8 Detailed Solution

Concept:

  • Here we have to use the multiplication properties of the matrixes.

Calculation:

Given:  A and B are square matrices of order n × n.

We know that,

(A - B)2 = (A - B) (A - B)

⇒ (A - B)2 = A2 - AB - BA + B2

∵  AB ≠ BA 

So, option 3 is correct.                              

Addition and Subtraction Question 9:

If  \(f(x) = \left[ {\begin{array}{*{20}{c}} x&\lambda \\ {2\lambda }&x \end{array}} \right],then\,f(\lambda x) - f(x)\) is equal to?

  1. \(x({\lambda ^2} - 1)\)
  2. \(2\lambda ({x^2} - 1)\)
  3. \({\lambda ^{^2}}({x^2} - 1)\)
  4. \(\lambda ({x^2} - 1)\)
  5. \({x^2}({\lambda ^2} - 1)\)

Answer (Detailed Solution Below)

Option 5 : \({x^2}({\lambda ^2} - 1)\)

Addition and Subtraction Question 9 Detailed Solution

Concept:

Conditions for the subtraction of matrices:

Two matrices should be of the same order (number of rows = number of columns).

Add the corresponding element of other matrices.

Calculation:

Given:

\(f(x) = \left[ {\begin{array}{*{20}{c}} x&\lambda \\ {2\lambda }&x \end{array}} \right]\)

\(\Rightarrow f(\lambda x) = \left[ {\begin{array}{*{20}{c}} {\lambda x}&\lambda \\ {2\lambda }&{\lambda x} \end{array}} \right]\)

\(f(\lambda x) - f(x) = \left[ {\begin{array}{*{20}{c}} \lambda &\lambda \\ {2\lambda }&{\lambda x} \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} x&\lambda \\ {2\lambda }&x \end{array}} \right]\)

\(\begin{array}{l} = ({(\lambda x)^2} - 2{\lambda ^2}) - ({x^2} - 2{\lambda ^2}) = {\lambda ^2}{x^2} - {x^2} = {x^2}({\lambda ^2} - 1)\\ \end{array}\)

Addition and Subtraction Question 10:

If A = diag [2, - 5, 9], B = diag [- 3, 7, 14] and C = diag [4, - 6, 3] then find the value of 2A + B - 5C ?

  1. diag [- 19, - 27, 17]
  2. diag [- 19, 27, - 17]
  3. diag [19, 27, 17]
  4. diag [- 19, 27, 17]

Answer (Detailed Solution Below)

Option 4 : diag [- 19, 27, 17]

Addition and Subtraction Question 10 Detailed Solution

Concept:

Diagonal Matrix:

Any square matrix in which all the elements are zero except those in the principal diagonal is called a diagonal matrix.

i.e A = [aij]n × n is a diagonal matrix if aij = 0 for i ≠ j.

Note: If A = diag [a11, a22, a33, ....., ann] is a diagonal matrix of order n then \(A = \;\left[ {\begin{array}{*{20}{c}} {{a_{11}}}& \cdots &0\\ \vdots & \ddots & \vdots \\ 0& \cdots &{{a_{nn}}} \end{array}} \right]\) 

Scalar Matrix:

A diagonal matrix in which all the principal diagonal elements are equal is called a scalar matrix.

Let A and B be any two matrices of same order m × n, then their sum A ± B = [aij ± bij]m × n where A = [aij]m × n and B = [bij]m × n

Calculation:

Given: A = diag [2, - 5, 9], B = diag [- 3, 7, 14] and C = diag [4, - 6, 3]

Here, we have to find the value of 2A + B - 5C

As we know that if, A = diag [a11, a22, a33, ....., ann] is a diagonal matrix of order n then \(A = \;\left[ {\begin{array}{*{20}{c}} {{a_{11}}}& \cdots &0\\ \vdots & \ddots & \vdots \\ 0& \cdots &{{a_{nn}}} \end{array}} \right]\) 

∵  A = diag [2, - 5, 9], B = diag [- 3, 7, 14] and C = diag [4, - 6, 3]

⇒ \(A = \left[ {\begin{array}{*{20}{c}} 2&0&0\\ 0&{ - \;5}&0\\ 0&0&9 \end{array}} \right],\;B = \left[ {\begin{array}{*{20}{c}} { - \;3}&0&0\\ 0&7&0\\ 0&0&{14} \end{array}} \right]\;and\;C = \left[ {\begin{array}{*{20}{c}} 4&0&0\\ 0&{ - \;6}&0\\ 0&0&3 \end{array}} \right]\)

⇒ \(2A = \left[ {\begin{array}{*{20}{c}} 4&0&0\\ 0&{ - \;10}&0\\ 0&0&{18} \end{array}} \right],\;B = \left[ {\begin{array}{*{20}{c}} { - \;3}&0&0\\ 0&7&0\\ 0&0&{14} \end{array}} \right]\;and\;5C = \left[ {\begin{array}{*{20}{c}} {20}&0&0\\ 0&{ - \;30}&0\\ 0&0&{15} \end{array}} \right]\)

⇒ \(2A + B - 5C = \left[ {\begin{array}{*{20}{c}} {\left( {4 - 3 - 20} \right)}&0&0\\ 0&{\left( { - \;10 + 7 + 30} \right)}&0\\ 0&0&{\left( {18 + 14 - 15} \right)} \end{array}} \right]\)

\(= \left[ {\begin{array}{*{20}{c}} { - \;19}&0&0\\ 0&{27}&0\\ 0&0&{17} \end{array}} \right]\)

Hence, 2A + B - 5C = diag [- 19, 27, 17]

Get Free Access Now
Hot Links: teen patti gold download apk teen patti plus teen patti master downloadable content teen patti glory teen patti joy