Principal Values MCQ Quiz in मल्याळम - Objective Question with Answer for Principal Values - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 17, 2025

നേടുക Principal Values ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Principal Values MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Principal Values MCQ Objective Questions

Top Principal Values MCQ Objective Questions

Principal Values Question 1:

Find the value of sin-1 (0.5) ?

  1. 60°
  2. 30°
  3. 45°
  4. 90°

Answer (Detailed Solution Below)

Option 2 : 30°

Principal Values Question 1 Detailed Solution

Concept:

Values of Trigonometric Ratios for Common Angles:
  30° 45° 60° 90°
sin 0 1/2 1/√2 √3/2 1
cos 1 √3/2 1/√2 1/2 0
tan 0 1/√3 1 √3
csc 2 √2 2/√3 1
sec 1 2/√3 √2 2
cot √3 1 1/√3 0
 

 

Calculation:

We have to find the value of sin-1 (0.5)

Let sin-1 (0.5) = θ

⇒ sin θ = 0.5 = \(\frac 1 2\)

⇒ sin θ = sin 30° 

∴ θ =  30° 

Hence θ = sin-1 (0.5)  = 30°

Principal Values Question 2:

Find the principal value of \(\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)\)

  1. \(\frac{2\pi}{3}\)
  2. \(\frac{3\pi}{2}\)
  3. \(\frac{5\pi}{2}\)
  4. \(\frac{\pi}{5}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{2\pi}{3}\)

Principal Values Question 2 Detailed Solution

Concept:

  • cot-1 (-x) = π - cot-1x
  • cot (π/3) = 1/√3 

Calculation:

Let y = \(\cot^{-1}\left(-\frac{1}{√{3}}\right)\)

\(⇒ y=π -\cot ^{-1}\frac{1}{√{3}}\)

⇒ y = π - π/3

⇒ y = 2π/3

Since range of cot-1 is (0, π)

Hence, the principal value is \(\frac{2π}{3}\).

Principal Values Question 3:

Find the principal value of cos-1 (√3/2) + cos-1 (-1/2)?

  1. π/6
  2. 2π/6
  3. 3π/6
  4. 5π/6

Answer (Detailed Solution Below)

Option 4 : 5π/6

Principal Values Question 3 Detailed Solution

Concept:

cos-1 (-x) = π - cos-1 x, x ∈ [-1, 1]

cos-1 (cos θ) = θ, ∀ θ ∈ [0, π]

Calculation:

As we know that, cos-1 (-x) = π - cos-1 x, x ∈ [-1, 1]

⇒ cos-1 (-1/2) = π - cos-1 (1/2)

⇒ cos-1 (√3/2) + cos-1 (-1/2) = cos-1 (√3/2) + [π - cos-1 (1/2)]

As we know that, cos π/3 = 1/2 and cos π/6 = √3/2

⇒ cos-1 (√3/2) + cos-1 (-1/2) = cos-1 (cos π/6) + [π -  cos-1 (cos π/3)]

As we know that, cos-1 (cos θ) = θ, ∀ θ ∈ [0, π]

⇒ cos-1 (√3/2) + cos-1 (-1/2) = π/6 + [π - π/3] = 5π/6

Principal Values Question 4:

Evaluate: \({\tan ^{ - 1}}\left( {\tan \left( {\frac{{7\pi }}{4}} \right)} \right) = \;?\)

  1. \(\rm -\ \frac{\pi}{4}\)
  2. \(\rm \ \frac{\pi}{4}\)
  3. \(\rm -\ \frac{\pi}{3}\)
  4. \(\rm -\ \frac{\pi}{6}\)

Answer (Detailed Solution Below)

Option 1 : \(\rm -\ \frac{\pi}{4}\)

Principal Values Question 4 Detailed Solution

Concept:

Inverse Trigonometric Functions for Negative Arguments:

sin-1 (-x) - sin-1 x cos-1 (-x) π - cos-1 x
cosec-1 (-x) - cosec-1 x sec-1 (-x) π - sec-1 x
tan-1 (-x) - tan-1 x cot-1 (-x) π - cot-1 x


tan (- x) = - tan x

cos (- x) = cos x

sin (- x) = - sin x

tan (2π - x) = - tan x

Calculation: 

Given: \({\tan ^{ - 1}}\left( {\tan \left( {\frac{{7π }}{4}} \right)} \right) \)  we get 

\(\rm \tan \ \frac {7π}{4} = tan\ (2π - \frac {π}{4}) = tan \ (- \frac {π}{4}) = - \tan \ \frac {π}{4} = - \ 1\)

tan-1 (- 1) = - tan-1 (1) = \(\rm -\ \frac{\pi}{4}\)

Additional Information

Principal Values of Inverse Trigonometric Functions:

Function Domain Range of Principal Value
sin-1 x [-1, 1] [-π/2, π/2]
cos-1 x [-1, 1] [0, π]
csc-1 x R - (-1, 1) [-π/2, π/2] - {0}
sec-1 x R - (-1, 1) [0, π] - {π/2}
tan-1 x R (-π/2, π/2)
cot-1 x R (0, π)

Principal Values Question 5:

The value of \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\) is

  1. \(\frac{25}{24}\)
  2. \(\frac{25}{7}\)
  3. \(\frac{24}{25}\)
  4. \(\frac{7}{24}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{7}{24}\)

Principal Values Question 5 Detailed Solution

Explanation:

If sinθ = x ⇒ θ = sin-1x, for θ ∈ [-π/2, π/2]

cot (cot-1 x) =x for x ∈ R

We have, \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\)

Let \(\cos^{−1}\left(\frac{7}{25}\right)\)= θ

⇒ cosθ = 7/25

⇒ sinθ = 24/25

⇒ cotθ = 7/24

∴  \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\)

= cotθ 

= 7/24

Principal Values Question 6:

Comprehension:

Directions: Read the following information carefully and answer the questions given below.

If \(\alpha = \cos^{-1}\left(\frac{4}{5}\right)\:and\:\beta=\tan^{-1}\left(\frac{2}{3}\right), \:where\:0<\alpha, \beta < \frac{\pi}{2}\) Then,

\(\cos^{-1}\left(\frac{44}{125}\right)\) is equal to

  1. π - 3α
  2. π - 2α

Answer (Detailed Solution Below)

Option 3 : π - 3α

Principal Values Question 6 Detailed Solution

Concept:

Trigonometric ratios:

  • sin θ = \(\frac{perpendicular}{hypotenuse}\)
  • cos θ = \(\frac{base}{hypotenuse}\)
  • tan θ = \(\frac{perpendicular}{base}\)

Trigonometric Formulae:

  • cos 3θ = 4 cos3θ − 3 cos θ
  • cos(π − θ) = − cos θ

 

Calculation:

F1 Sachin K Shraddha 10-02-2022 D5

In anc Δ ABC and Δ PQR, by using trigonometry ratio formula,

cos α = \(\frac{4}{5}\)

Now we know that 

cos 3α = 4 cos3α − 3 cos α

⇒ cos 3α \(4\times\big(\frac{4}{5}\big)^3-3\times\frac{4}{5} \)

⇒ cos 3α \(4\times\big(\frac{64}{125}\big)-3\times\frac{4}{5} \)

⇒ cos 3α \(-\frac{44}{125} \)     ----(1)

Since, cos(π − θ) = − cos θ

⇒ cos(π − 3α) = − cos 3α 

⇒ cos(π − 3α) =  \(\frac{44}{125} \)    [From equation (1)]

​⇒ (π − 3α) = cos-1 \(\frac{44}{125} \)

∴ The value of  cos-1(\(\frac{44}{125} \)) is (π − 3α).

Principal Values Question 7:

Find the principal value of \(\rm \sin^{-1} \left ( \frac {-1}{2}\right)\).

  1. -45°
  2. -30°
  3. -60°
  4. -90°

Answer (Detailed Solution Below)

Option 2 : -30°

Principal Values Question 7 Detailed Solution

Concept:

Principal Values of Inverse Trigonometric Functions:

Function Domain Range of Principal Value
sin-1 x [-1, 1] [-π/2, π/2]
cos-1 x [-1, 1] [0, π]
cosec-1 x R - (-1, 1) [-π/2, π/2] - {0}
sec-1 x R - (-1, 1) [0, π] - {π/2}
tan-1 x R (-π/2, π/2)
cot-1 x R (0, π)

 

Inverse Trigonometric Functions for Negative Arguments:

sin-1 (-x) - sin-1 x cos-1 (-x) π - cos-1 x
cosec-1 (-x) - cosec-1 x sec-1 (-x) π - sec-1 x
tan-1 (-x) - tan-1 x cot-1 (-x) π - cot-1 x

 

Calculation: 

As we know sin-1 (-x) = - sin-1 x

So,  \(\rm \sin^{-1} \left ( \frac {-\ 1}{2}\right) = - \sin^{-1} \left ( \frac {1}{ 2}\right)\)

Let \( \sin^{-1} \left ( \frac {1}{ 2}\right) \) = θ 

⇒ sin θ = \(\frac{1}{ 2}\) = sin 30° 

∴ θ = 30° 

Hence, \(\rm \sin^{-1} \left ( \frac {-1}{2}\right)\) = -θ = -30°

Principal Values Question 8:

Considering only the principal values of inverse trigonometric functions, the number of positive real values of x satisfying \(tan ^{-1}(x)+tan ^{-1}(2 x)=\frac{\pi}{4}\) is :  

  1. More than 2 

Answer (Detailed Solution Below)

Option 2 : 1 

Principal Values Question 8 Detailed Solution

Calculation

Given

tan-1x + tan-1 2x = \(\frac{\pi}{4}\)x > 0

⇒ tan-1 2x = \(\frac{\pi}{4}\) - tan-1

Taking tan both sides

⇒ 2x = \(\frac{1-x}{1+x}\)

⇒ 2x2 + 3x - 1 = 0

⇒ x = \(\frac{-3 \pm \sqrt{9+8}}{8}=\frac{-3 \pm \sqrt{17}}{8}\)

Only possible x = \(\frac{-3+\sqrt{17}}{8}\)

Hence option (2) is correct

Principal Values Question 9:

The principal value of \(\tan^{-1}\left (\cot \dfrac {3\pi}{4}\right)\) is :

  1. \(-\dfrac {3\pi}{4}\)
  2. \(\dfrac {3\pi}{4}\)
  3. \(-\dfrac {\pi}{4}\)
  4. \(\dfrac {\pi}{4}\)

Answer (Detailed Solution Below)

Option 3 : \(-\dfrac {\pi}{4}\)

Principal Values Question 9 Detailed Solution

We have \(\tan^{-1}\big (\cot \dfrac{3\pi}{4}\big)\)

\(=\tan^{-1}\big(\cot \big(\dfrac{\pi}{2}+\dfrac{\pi}{4}\big)\big)\)

\(=\tan^{-1}(-\tan\dfrac{\pi}{4}\big)\)

\(=\tan^{-1}(\tan(-\dfrac{\pi}{4}\big))\)

\(=-\dfrac{\pi}{4}\)

Principal Values Question 10:

The value of \(\sin [2{\cos ^{ - 1}}\frac{{\sqrt 5 }}{3}] \) is,

  1. \(\frac{{\sqrt 5 }}{3}\)
  2. \(\frac{{2\sqrt 5 }}{3}\)
  3. \(\frac{{4\sqrt 5 }}{9}\)
  4. \(\frac{{2\sqrt 5 }}{9}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{{4\sqrt 5 }}{9}\)

Principal Values Question 10 Detailed Solution

Given:

\(\sin [2{\cos ^{ - 1}}\frac{{\sqrt 5 }}{3}] \)

Formula Used:

2cos-1x = cos-1(2x2 - 1)

\(cos^{-1}x = sin^{-1}(\sqrt{1 - x^2})\)

Calculation:

We have,

\(\sin [2{\cos ^{ - 1}}\frac{{\sqrt 5 }}{3}] \)

⇒ \(sin \left[cos^{-1}\left( 2(\frac{\sqrt5}{3})^2 - 1\right) \right]\)

⇒ \(sin\left[ cos^{-1} \left(2 \times \frac{5}{9} - 1 \right) \right]\)

⇒ \(sin \left[ cos^{-1} \frac{1}{9}\right]\)

⇒ \(sin\left[sin^{-1} \sqrt{1 - (\frac{1}{9})^2 } \ \right]\)

⇒ \(sin \left[ sin^{-1} \sqrt{\frac{80}{81}} \right] \)

⇒ \(\frac{\sqrt{80}}{9}\)

⇒ \(\frac{4\sqrt5}{9}\)

∴ The value of \(\sin [2{\cos ^{ - 1}}\frac{{\sqrt 5 }}{3}] \) is \(\frac{4\sqrt5}{9}\)

Get Free Access Now
Hot Links: teen patti diya teen patti master online teen patti joy apk