Principal Values MCQ Quiz in मल्याळम - Objective Question with Answer for Principal Values - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 17, 2025
Latest Principal Values MCQ Objective Questions
Top Principal Values MCQ Objective Questions
Principal Values Question 1:
Find the value of sin-1 (0.5) ?
Answer (Detailed Solution Below)
Principal Values Question 1 Detailed Solution
Concept:
0° | 30° | 45° | 60° | 90° | |
sin | 0 | 1/2 | 1/√2 | √3/2 | 1 |
cos | 1 | √3/2 | 1/√2 | 1/2 | 0 |
tan | 0 | 1/√3 | 1 | √3 | ∞ |
csc | ∞ | 2 | √2 | 2/√3 | 1 |
sec | 1 | 2/√3 | √2 | 2 | ∞ |
cot | ∞ | √3 | 1 | 1/√3 | 0 |
Calculation:
We have to find the value of sin-1 (0.5)
Let sin-1 (0.5) = θ
⇒ sin θ = 0.5 = \(\frac 1 2\)
⇒ sin θ = sin 30°
∴ θ = 30°
Hence θ = sin-1 (0.5) = 30°
Principal Values Question 2:
Find the principal value of \(\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)\)
Answer (Detailed Solution Below)
Principal Values Question 2 Detailed Solution
Concept:
- cot-1 (-x) = π - cot-1x
-
cot (π/3) = 1/√3
Calculation:
Let y = \(\cot^{-1}\left(-\frac{1}{√{3}}\right)\)
\(⇒ y=π -\cot ^{-1}\frac{1}{√{3}}\)
⇒ y = π - π/3
⇒ y = 2π/3
Since range of cot-1 is (0, π)
Hence, the principal value is \(\frac{2π}{3}\).
Principal Values Question 3:
Find the principal value of cos-1 (√3/2) + cos-1 (-1/2)?
Answer (Detailed Solution Below)
Principal Values Question 3 Detailed Solution
Concept:
cos-1 (-x) = π - cos-1 x, x ∈ [-1, 1]
cos-1 (cos θ) = θ, ∀ θ ∈ [0, π]
Calculation:
As we know that, cos-1 (-x) = π - cos-1 x, x ∈ [-1, 1]
⇒ cos-1 (-1/2) = π - cos-1 (1/2)
⇒ cos-1 (√3/2) + cos-1 (-1/2) = cos-1 (√3/2) + [π - cos-1 (1/2)]
As we know that, cos π/3 = 1/2 and cos π/6 = √3/2
⇒ cos-1 (√3/2) + cos-1 (-1/2) = cos-1 (cos π/6) + [π - cos-1 (cos π/3)]
As we know that, cos-1 (cos θ) = θ, ∀ θ ∈ [0, π]
⇒ cos-1 (√3/2) + cos-1 (-1/2) = π/6 + [π - π/3] = 5π/6
Principal Values Question 4:
Evaluate: \({\tan ^{ - 1}}\left( {\tan \left( {\frac{{7\pi }}{4}} \right)} \right) = \;?\)
Answer (Detailed Solution Below)
Principal Values Question 4 Detailed Solution
Concept:
sin-1 (-x) | - sin-1 x | cos-1 (-x) | π - cos-1 x |
cosec-1 (-x) | - cosec-1 x | sec-1 (-x) | π - sec-1 x |
tan-1 (-x) | - tan-1 x | cot-1 (-x) | π - cot-1 x |
tan (- x) = - tan x
cos (- x) = cos x
sin (- x) = - sin x
tan (2π - x) = - tan x
Calculation:
Given: \({\tan ^{ - 1}}\left( {\tan \left( {\frac{{7π }}{4}} \right)} \right) \) we get
\(\rm \tan \ \frac {7π}{4} = tan\ (2π - \frac {π}{4}) = tan \ (- \frac {π}{4}) = - \tan \ \frac {π}{4} = - \ 1\)
tan-1 (- 1) = - tan-1 (1) = \(\rm -\ \frac{\pi}{4}\)
Additional Information
Function | Domain | Range of Principal Value |
sin-1 x | [-1, 1] | [-π/2, π/2] |
cos-1 x | [-1, 1] | [0, π] |
csc-1 x | R - (-1, 1) | [-π/2, π/2] - {0} |
sec-1 x | R - (-1, 1) | [0, π] - {π/2} |
tan-1 x | R | (-π/2, π/2) |
cot-1 x | R | (0, π) |
Principal Values Question 5:
The value of \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\) is
Answer (Detailed Solution Below)
Principal Values Question 5 Detailed Solution
Explanation:
If sinθ = x ⇒ θ = sin-1x, for θ ∈ [-π/2, π/2]
cot (cot-1 x) =x for x ∈ R
We have, \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\)
Let \(\cos^{−1}\left(\frac{7}{25}\right)\)= θ
⇒ cosθ = 7/25
⇒ sinθ = 24/25
⇒ cotθ = 7/24
∴ \(\cot \left[\cos^{−1}\left(\frac{7}{25}\right)\right]\)
= cotθ
= 7/24
Principal Values Question 6:
Comprehension:
Directions: Read the following information carefully and answer the questions given below.
If \(\alpha = \cos^{-1}\left(\frac{4}{5}\right)\:and\:\beta=\tan^{-1}\left(\frac{2}{3}\right), \:where\:0<\alpha, \beta < \frac{\pi}{2}\) Then,
\(\cos^{-1}\left(\frac{44}{125}\right)\) is equal to
Answer (Detailed Solution Below)
Principal Values Question 6 Detailed Solution
Concept:
Trigonometric ratios:
- sin θ = \(\frac{perpendicular}{hypotenuse}\)
- cos θ = \(\frac{base}{hypotenuse}\)
- tan θ = \(\frac{perpendicular}{base}\)
Trigonometric Formulae:
- cos 3θ = 4 cos3θ − 3 cos θ
- cos(π − θ) = − cos θ
Calculation:
In anc Δ ABC and Δ PQR, by using trigonometry ratio formula,
cos α = \(\frac{4}{5}\)
Now we know that
cos 3α = 4 cos3α − 3 cos α
⇒ cos 3α = \(4\times\big(\frac{4}{5}\big)^3-3\times\frac{4}{5} \)
⇒ cos 3α = \(4\times\big(\frac{64}{125}\big)-3\times\frac{4}{5} \)
⇒ cos 3α = \(-\frac{44}{125} \) ----(1)
Since, cos(π − θ) = − cos θ
⇒ cos(π − 3α) = − cos 3α
⇒ cos(π − 3α) = \(\frac{44}{125} \) [From equation (1)]
⇒ (π − 3α) = cos-1 \(\frac{44}{125} \)
∴ The value of cos-1(\(\frac{44}{125} \)) is (π − 3α).
Principal Values Question 7:
Find the principal value of \(\rm \sin^{-1} \left ( \frac {-1}{2}\right)\).
Answer (Detailed Solution Below)
Principal Values Question 7 Detailed Solution
Concept:
Function | Domain | Range of Principal Value |
sin-1 x | [-1, 1] | [-π/2, π/2] |
cos-1 x | [-1, 1] | [0, π] |
cosec-1 x | R - (-1, 1) | [-π/2, π/2] - {0} |
sec-1 x | R - (-1, 1) | [0, π] - {π/2} |
tan-1 x | R | (-π/2, π/2) |
cot-1 x | R | (0, π) |
Inverse Trigonometric Functions for Negative Arguments:
sin-1 (-x) | - sin-1 x | cos-1 (-x) | π - cos-1 x |
cosec-1 (-x) | - cosec-1 x | sec-1 (-x) | π - sec-1 x |
tan-1 (-x) | - tan-1 x | cot-1 (-x) | π - cot-1 x |
Calculation:
As we know sin-1 (-x) = - sin-1 x
So, \(\rm \sin^{-1} \left ( \frac {-\ 1}{2}\right) = - \sin^{-1} \left ( \frac {1}{ 2}\right)\)
Let \( \sin^{-1} \left ( \frac {1}{ 2}\right) \) = θ
⇒ sin θ = \(\frac{1}{ 2}\) = sin 30°
∴ θ = 30°
Hence, \(\rm \sin^{-1} \left ( \frac {-1}{2}\right)\) = -θ = -30°
Principal Values Question 8:
Considering only the principal values of inverse trigonometric functions, the number of positive real values of x satisfying \(tan ^{-1}(x)+tan ^{-1}(2 x)=\frac{\pi}{4}\) is :
Answer (Detailed Solution Below)
Principal Values Question 8 Detailed Solution
Calculation
Given
tan-1x + tan-1 2x = \(\frac{\pi}{4}\); x > 0
⇒ tan-1 2x = \(\frac{\pi}{4}\) - tan-1x
Taking tan both sides
⇒ 2x = \(\frac{1-x}{1+x}\)
⇒ 2x2 + 3x - 1 = 0
⇒ x = \(\frac{-3 \pm \sqrt{9+8}}{8}=\frac{-3 \pm \sqrt{17}}{8}\)
Only possible x = \(\frac{-3+\sqrt{17}}{8}\)
Hence option (2) is correct
Principal Values Question 9:
The principal value of \(\tan^{-1}\left (\cot \dfrac {3\pi}{4}\right)\) is :
Answer (Detailed Solution Below)
Principal Values Question 9 Detailed Solution
We have \(\tan^{-1}\big (\cot \dfrac{3\pi}{4}\big)\)
\(=\tan^{-1}\big(\cot \big(\dfrac{\pi}{2}+\dfrac{\pi}{4}\big)\big)\)
\(=\tan^{-1}(-\tan\dfrac{\pi}{4}\big)\)
\(=\tan^{-1}(\tan(-\dfrac{\pi}{4}\big))\)
\(=-\dfrac{\pi}{4}\)
Principal Values Question 10:
The value of \(\sin [2{\cos ^{ - 1}}\frac{{\sqrt 5 }}{3}] \) is,
Answer (Detailed Solution Below)
Principal Values Question 10 Detailed Solution
Given:
\(\sin [2{\cos ^{ - 1}}\frac{{\sqrt 5 }}{3}] \)
Formula Used:
2cos-1x = cos-1(2x2 - 1)
\(cos^{-1}x = sin^{-1}(\sqrt{1 - x^2})\)
Calculation:
We have,
\(\sin [2{\cos ^{ - 1}}\frac{{\sqrt 5 }}{3}] \)
⇒ \(sin \left[cos^{-1}\left( 2(\frac{\sqrt5}{3})^2 - 1\right) \right]\)
⇒ \(sin\left[ cos^{-1} \left(2 \times \frac{5}{9} - 1 \right) \right]\)
⇒ \(sin \left[ cos^{-1} \frac{1}{9}\right]\)
⇒ \(sin\left[sin^{-1} \sqrt{1 - (\frac{1}{9})^2 } \ \right]\)
⇒ \(sin \left[ sin^{-1} \sqrt{\frac{80}{81}} \right] \)
⇒ \(\frac{\sqrt{80}}{9}\)
⇒ \(\frac{4\sqrt5}{9}\)
∴ The value of \(\sin [2{\cos ^{ - 1}}\frac{{\sqrt 5 }}{3}] \) is \(\frac{4\sqrt5}{9}\)