Properties of Definite Integrals MCQ Quiz - Objective Question with Answer for Properties of Definite Integrals - Download Free PDF
Last updated on Apr 17, 2025
Latest Properties of Definite Integrals MCQ Objective Questions
Properties of Definite Integrals Question 1:
If \(\rm \int_0^a \left[f(x)+f(-x)\right]dx=\int_{-a}^{\ \ a} g(x)\ dx \), then what is g(x) equal to?
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 1 Detailed Solution
Concept:
Definite Integrals:
\(\rm \int_a^bf(x)\ dx=\int_a^bf(a+b-x)\ dx\).
If f(x) = f(2a - x), then
\(\rm \int_0^{2a}f(x)\ dx=2\int_0^af(x)\ dx\).
A function f(x) is:
- Even, if f(-x) = f(x). And \(\rm \int_{-a}^ {\ \ a}f(x)\ dx=2\int_{0}^af(x)\ dx\).
- Odd, if f(-x) = -f(x). And \(\rm \int_{-a}^ {\ \ a}f(x)\ dx=0\).
- Periodic, if f(np ± x) = f(x), for some number p and n ∈ Z.
Calculation:
\(\rm\int_0^a[f(x)+f(-x)].dx=\int_{-a}^ag(x).dx \)
\(\rm =\int^0_{-a}g(x).dx+\int_0^ag(x).dx \)
\(\rm =\int_0^ag(-x).dx+\int_0^ag(x).dx \)
\(\rm \int_0^a[g(x)+g(-x)].dx \)
∴ f(x) = g(x)
Properties of Definite Integrals Question 2:
If f(a + b - x) = f(x), then\( \int_{a}^{b}\) x f(x) dx is equal to
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 2 Detailed Solution
Concept:
I=\( \int_{a}^{b}f(x)dx\) = \( \int_{a}^{b}f(a+b-x)dx\)
Calculation:
⇒ I =\( \int_{a}^{b}\)x f(x)dx ------------(1)
⇒ I = \( \int_{a}^{b}\)(a +b -x) f(a + b - x)dx---(2)
adding equation 1+2
⇒ 2I=\( \int_{a}^{b}\)x f(x)dx +\( \int_{a}^{b}\)(a + b -x)f(a + b - x)dx
given f(a + b -x)=f(x)
⇒ 2I = \( \int_{a}^{b}\)(b + a)f(x)dx
⇒ I = \({(b+a)\over2 } \int_{a}^{b}\)f(x)dx
Hence option 1 is correct
Properties of Definite Integrals Question 3:
If I = \(\int_0^{\pi / 4}\) x2 cos2x dx then
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 3 Detailed Solution
Calculation:
Given, I = \(\int_0^{\pi / 4}\) x2 cos2x dx
⇒ I = x2\(\int_0^{\pi / 4}\cos2x \ dx\) - \(\int_0^{\pi / 4}\left(\frac{d}{dx}x^2\int_0^{\pi/4}\cos2x \ dx\right)dx\)
⇒ I = \(\frac{x^2\sin2x}{2}\) - \(\int_0^{\pi / 4}x\sin2x \ dx\)
⇒ I = \(\frac{x^2\sin2x}{2}\) - (x\(\int_0^{\pi / 4}\sin2x \ dx\) - \(\int_0^{\pi / 4}\int_0^{\pi/4}\sin2x \ dx \ dx\))
⇒ I = \(\frac{x^2\sin2x}{2}\) - (\(-\frac{x\cos2x}{2}\) + \(\frac{\sin2x}{4}\))
⇒ I = \(\left[\frac{x^2\sin2x}{2}+\frac{x\cos2x}{2}-\frac{\sin2x}{4}\right]_0^{\pi/4}\)
= \(\left[\frac{\pi^2}{32}-\frac{1}{4}\right]-0\)
= \(\frac{\pi^2}{32}\) - \(\frac{1}{4}\)
∴ The value of integral is \(\frac{\pi^2}{32}\) - \(\frac{1}{4}\).
The correct answer is Option 2.
Properties of Definite Integrals Question 4:
Comprehension:
Direction : Consider the following for the items that follow :
Let f(t) = \(\rm \ln(t+\sqrt{1+t^2})\) and g(t) = tan(f(t)).
What is \(\rm \int_{-\pi}^\pi g(t)dt\) equal to
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 4 Detailed Solution
Explanation:
Let f(t) = \(ln (t+\sqrt{1+t^2}\)
f(-t) = \(ln (\sqrt{1+t^2} -t\)
= \(ln( \frac{1}{t+ \sqrt{1+t^2}})\)
= \(-ln(t+\sqrt{1+t^2})\) = -f(t)
∴ f(t) is an odd function
Now g(t) = tan f(t)
Then, g(–t) = tan f(–t)
= –tan (f(t)) = –g(t)
So g(t) is also an odd function
When g(t) is an odd function, then
\(\rm \int_{-\pi}^\pi g(t)dt\) = 0
∴ Option (b) is correct
Properties of Definite Integrals Question 5:
Comprehension:
Direction : Consider the following for the items that follow :
Let f(t) = \(\rm \ln(t+\sqrt{1+t^2})\) and g(t) = tan(f(t)).
Consider the following statements :
I. f(t) is an odd function.
Il. g(t) is an odd function.
Which of the statements given above is/are correct?
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 5 Detailed Solution
Explanation:
Let f(t) = \(ln (t+\sqrt{1+t^2}\)
f(-t) = \(ln (\sqrt{1+t^2} -t\)
= \(ln( \frac{1}{t+ \sqrt{1+t^2}})\)
= \(-ln(t+\sqrt{1+t^2})\) = -f(t)
∴ f(t) is an odd function
Now g(t) = tan f(t)
Then, g(–t) = tan f(–t)
= –tan (f(t)) = –g(t)
So g(t) is also an odd function
Hence, both statements I and II are correct.
∴ Option (c) is correct
Top Properties of Definite Integrals MCQ Objective Questions
Find the value of \(\rm \int_0^1 x \sqrt{x^2 + 4}\;dx\)
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 6 Detailed Solution
Download Solution PDFConcept:
\(\rm \int x^n dx = \frac{x^{n+1}}{n+1}+c\)
Calculation:
I = \(\rm \int_0^1 x \sqrt{x^2 + 4}\;dx\)
Let x2 + 4 = t
Differentiating with respect to x, we get
⇒ 2xdx = dt
⇒ xdx = \(\rm \frac {dt}{2}\)
x | 0 | 1 |
t | 4 | 5 |
Now,
I = \(\rm \frac{1}{2}\int_4^5 \sqrt{t}\;dt\)
= \(\rm \frac{1}{2} \left[\frac{t^{3/2}}{\frac{3}{2}} \right ]_4^5\)
= \(\rm \frac{1}{3} \left[5^{3/2} - 4^{3/2} \right ]\)
= \(\rm \frac{1}{3}[5\sqrt 5 - 8]\)
The value of the integral \(\mathop \smallint \nolimits_0^{\frac{\pi }{2}} \frac{{\sqrt {tanx} }}{{1 + \sqrt {tanx} }}\) dx is
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 7 Detailed Solution
Download Solution PDFCONCEPT:
\(\mathop \smallint \nolimits_a^b f\left( x \right)\;dx = \;\mathop \smallint \nolimits_a^b f\left( {a + b - x} \right)\;dx\)
CALCULATION:
Here, we have to find the value of the integral \(\mathop \smallint \nolimits_0^{\frac{\pi }{2}} \frac{{\sqrt {tanx} }}{{1 + \sqrt {tanx} }}\)
Let \(I = \mathop \smallint \nolimits_0^{\frac{\pi }{2}} \frac{{\sqrt {tanx} }}{{1 + \sqrt {tanx} }}dx\)---------(1)
As we know that, \(\mathop \smallint \nolimits_a^b f\left( x \right)\;dx = \;\mathop \smallint \nolimits_a^b f\left( {a + b - x} \right)\;dx\)
⇒ \(I = \mathop \smallint \nolimits_0^{\frac{\pi }{2}} \frac{{\sqrt {cotx} }}{{1 + \sqrt {cotx} }} dx\)----------(2)
Adding equation (1) and (2), we get
⇒ \(2I = \;\mathop \smallint \nolimits_0^{\frac{\pi }{2}\;} \left[ {\frac{{\sqrt {\tan x} }}{{1 + \sqrt {\tan x} }} + \frac{{\sqrt {\cot x} }}{{1 + \sqrt {\cot x} }}} \right] dx\)
⇒ \(2I = \;\mathop \smallint \limits_0^{\frac{\pi }{2}} dx = \frac{\pi }{2}\;\)
⇒ \(I = \frac{\pi}{4}\)
Hence, option B is the correct answer.
Find the value of \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\sin^8 x}}{\sqrt{\sin^8 x}+ \sqrt{\cos^8 x}}dx\)
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 8 Detailed Solution
Download Solution PDFConcept:
\(\rm \displaystyle\int_{a}^{b} f(x) dx = \displaystyle\int_{a}^{b} f(a+b-x) dx\)
Calculation:
Consider I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\sin^8 x}}{\sqrt{\sin^8 x}+ \sqrt{\cos^8 x}}dx\) ----(i)
⇒ I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\sin^8 (π/2 -x)}}{\sqrt{\sin^8 (π/2 -x)}+ \sqrt{\cos^8 (π/2 -x)}}dx\)
⇒ I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\cos^8 x}}{\sqrt{\sin^8 x}+ \sqrt{\cos^8 x}}dx\) ----(ii)
Add (i) and (ii), we get
⇒ 2I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\cos^8 x}+ \sqrt{sin^8x}}{\sqrt{\cos^8 x}+ \sqrt{\sin^8 x}}dx\)
⇒ 2I = \(\rm \displaystyle\int_0^{\pi/2}dx\)
⇒ 2I = \(\rm[x]^\frac{\pi}{2}_0\)
⇒ I = \(\dfrac{\pi}{4}\)
Evaluate: \(\rm \int_{-\pi/2}^{\pi/2}|\sin x|\ dx\)
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 9 Detailed Solution
Download Solution PDFConcept:
Definite Integral:
If ∫ f(x) dx = g(x) + C, then \(\rm \int_a^b f(x)\ dx = \left[ g(x)\right]_a^b\) = g(b) - g(a).
Properties:
- For even functions: f(-x) = f(x). And \(\rm \int_{-a}^ {\ \ a}f(x)\ dx=2\int_{0}^af(x)\ dx\).
- For odd functions: f(-x) = -f(x). And \(\rm \int_{-a}^ {\ \ a}f(x)\ dx=0\).
- \(\rm \int_a^bf(x)\ dx=\int_a^bf(a+b-x)\ dx\).
- If f(x) = f(2a - x), then \(\rm \int_0^{2a}f(x)\ dx=2\int_0^af(x)\ dx\).
Calculation:
It can be observed that sin (-θ) = -sin θ.
Let f(x) = |sin x|
Put x = -x
⇒ f(-x) = |sin -x| = |-sin x| = |sin x| = f(x)
∴ |sin x| is an even function.
Therefore, using the properties of definite integrals, we get:
\(\rm \int_{-\pi/2}^{\pi/2}|\sin x|\ dx\)
= 2\(\rm \int_{0}^{\pi/2}\sin x\ dx\)
= 2\(\rm \left[-\cos x\right]_{0}^{\pi/2}\)
= -2\(\rm \left[\cos \pi/2-\cos 0\right]\)
= -2[0 - 1]
= 2.
\(\rm \int_{-2}^2\)(sin x + cos x)dx =
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 10 Detailed Solution
Download Solution PDFConcept:
Integral property:
\(\rm \mathop \smallint \limits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = \left\{ {\begin{array}{*{20}{c}} {2\mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}},\rm If\;f\left( { - {\rm{x}}} \right) = f\left( x \right)}\\ {0,\;\rm If\;f\left( { - {\rm{x}}} \right) = - f\left( x \right)} \end{array}} \right.\)
Calculation:
I = \(\rm \int_{-2}^2\) (sin x + cos x)dx
Let f1(x) = sinx and f2(x) = cosx
f1(x) = sinx
f1(-x) = sin(-x) = -sinx = -f1(x)
f2(x) = cosx
f2(-x) = cox(-x) = cosx = f2(x)
By integration property f1(x) = 0
I = \(\rm 2\mathop \smallint \nolimits_0^2 cosx\;dx\)
= 2
= 2[sin 2 - sin 0]
= 2sin 2
What is \(\displaystyle\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \rm \dfrac{sin^5 \ x \ cos^3 \ x}{x^4}dx\) equal to?
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 11 Detailed Solution
Download Solution PDFConcept:
If f(x) is even function then f(-x) = f(x)If f(x) is odd function then f(-x) = -f(x)
Properties of definite integral
If f(x) is even function then \(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = 2\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}}\)
If f(x) is odd function then \(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} =0\)
Calculation:
Let I = \(\displaystyle\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \rm \dfrac{sin^5 \ x \ cos^3 \ x}{x^4}dx\)
Let f(x) = \(\rm \dfrac{sin^5 \ x \ cos^3 \ x}{x^4}\)
Replaced x by -x,
⇒ f(-x) = \(\rm \dfrac{sin^5 \ (-x) \ cos^3 \ (-x)}{(-x)^4}\)
As we know sin (-θ) = - sin θ and cos (-θ) = cos θ
= \(\rm \dfrac{-sin^5 \ x \ cos^3 \ x}{x^4}\)
⇒ f(-x) = -f(x)
So, f(x) is odd function
Therefore, I = 0
Evaluate \(\rm\int_{0}^{\pi/2}\) log cot x dx .
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 12 Detailed Solution
Download Solution PDFConcept:
Definite Integral properties:
\(\mathop \smallint \limits_{\rm{0}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = \mathop \smallint \limits_{\rm{0}}^{\rm{a}} {\rm{f}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{\;dx}}\)
Calculation :
Let , I = \(\rm\int_{0}^{π/2}\) log cot x dx ....(i)
Now using property, \(\mathop \smallint \limits_{\rm{0}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = \mathop \smallint \limits_{\rm{0}}^{\rm{a}} {\rm{f}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{\;dx}}\)
I = \(\rm\int_{0}^{π/2}\) log cot ( \(\rm \frac{\pi}{2}\) - x ) dx
I = \(\rm\int_{0}^{π/2}\) log tan x dx .... (ii)
Adding eq. (i) and (ii), we get
⇒ 2I = \(\rm\int_{0}^{π/2}\) (log cot x + log tan x ) dx
⇒ 2I = \(\rm\int_{0}^{π/2}\) log ( tan x × cot x ) dx [∵ log m + log n = log mn]
⇒ 2I = \(\rm\int_{0}^{π/2}\) log 1 dx
⇒ 2I = 0 [ ∵ log 1 = 0 ]
⇒ I = 0
The correct option is 1.
Evaluate the integral \(\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{1}{{1 + \tan {\rm{x}}}}{\rm{dx}}\)
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 13 Detailed Solution
Download Solution PDFConcept:
Property of definite integrals: \(\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{dx}}\)
Calculation:
I = \(\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{1}{{1 + \tan {\rm{x}}}}{\rm{dx}}\) …. (1)
Using the property of definite integrals:
I = \(\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{1}{{1 + \tan \left( {\frac{{\rm{\pi }}}{2} - {\rm{x}}} \right)}}{\rm{dx}}\)
I \(= \mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{1}{{1 + \cot {\rm{x}}}}{\rm{dx}}\) ..... (2)
Adding equation (1) and (2), we get
2I = \(\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{1}{{1 + \tan {\rm{x}}}}{\rm{dx}} + \mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \frac{1}{{1 + \cot {\rm{x}}}}{\rm{dx}}\)
\(=\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \left[ {\frac{1}{{1 + \tan {\rm{x}}}} + \frac{1}{{1 + \cot {\rm{x}}}}} \right]{\rm{dx}} \)
\(= \mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \left[ {\frac{1}{{1 + \tan {\rm{x}}}} + \frac{{\tan {\rm{x}}}}{{1 + \tan {\rm{x}}}}} \right]{\rm{dx}} \)
\(= \mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} \left[ {\frac{{1 + \tan {\rm{x}}}}{{1 + \tan {\rm{x}}}}} \right]{\rm{dx}}\)
\( = \mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{2}} 1{\rm{dx}}\)
\( = {\rm{\;}}\left[ x \right]_0^{\frac{{\rm{\pi }}}{2}} \)
\(= \frac{{\rm{\pi }}}{2}\)
∴ I \(= \frac{{\rm{\pi }}}{4}\)
The value of \(\int\limits_2^8 {\frac{{\sqrt {10 - x} }}{{\sqrt x + \sqrt {10 - x} }}} dx\) is
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 14 Detailed Solution
Download Solution PDFConcept:
Properties of definite integral:
\(\rm \int\limits_a^b f(x) dx\) = \(\rm \int\limits_a^b f(b+a -x) dx\)
Calculation:
I = \(\rm \int\limits_2^8 {\frac{{\sqrt {10 - x} }}{{\sqrt x + \sqrt {10 - x} }}} dx\) ...(i)
I = \(\rm\int\limits_2^8 {\frac{{\sqrt {10 - (8+2-x)} }}{{\sqrt{8+2- x} + \sqrt {10 - (8+2-x)} }}} dx\)
I = \(\rm\int\limits_2^8 {\frac{{\sqrt { x} }}{{\sqrt {10 - x} +\sqrt x }}} dx\) ...(ii)
Adding (i) and (ii), we get
2I = \(\rm\int\limits_2^8 {\frac{{\sqrt {10 - x}+\sqrt x }}{{\sqrt x + \sqrt {10 - x} }}} dx\)
2I = \(\rm\int\limits_2^8 dx\)
2I = \(\rm\left[x\right]_2^8\)
2I = 8 - 2 = 6
I = 3
Evaluate \(\int\limits_0^5 {\frac{{\sqrt {5- x} }}{{\sqrt x + \sqrt {5- x} }}} dx\)
Answer (Detailed Solution Below)
Properties of Definite Integrals Question 15 Detailed Solution
Download Solution PDFConcept:
Properties of definite integral:
\(\rm \int\limits_a^b f(x) dx\) = \(\rm \int\limits_a^b f(b+a -x) dx\)
Calculation:
I = \(\rm \int\limits_0^5 {\frac{{\sqrt {5- x} }}{{\sqrt x + \sqrt {5- x} }}} dx\) ...(i)
I = \(\rm\int\limits_0^5 {\frac{{\sqrt {5 - (5+0-x)} }}{{\sqrt{5+0- x} + \sqrt {5- (5+0-x)} }}} dx\)
I = \(\rm\int\limits_0^5 {\frac{{\sqrt { x} }}{{\sqrt {5 - x} +\sqrt x }}} dx\) ...(ii)
Adding (i) and (ii), we get
2I = \(\rm\int\limits_0^5 {\frac{{\sqrt {5- x}+\sqrt x }}{{\sqrt x + \sqrt {5- x} }}} dx\)
2I = \(\rm\int\limits_0^5dx\)
2I = \(\rm\left[x\right]_0^5\)
2I = 5 - 0 = 5
I = 2.5