Modulus of Complex Number MCQ Quiz - Objective Question with Answer for Modulus of Complex Number - Download Free PDF
Last updated on Apr 11, 2025
Latest Modulus of Complex Number MCQ Objective Questions
Modulus of Complex Number Question 1:
Comprehension:
Direction : Consider the following for the items that follow :
Let Z 1 and Z 2 be any two complex numbers such that \(\rm Z_1^2+Z_2^2+Z_1Z_2=0\)
what is the value of \(\rm \frac{1}{2}+Re\left(\frac{Z_1}{Z_2}\right)?\)
Answer (Detailed Solution Below)
Modulus of Complex Number Question 1 Detailed Solution
Explanation:
\(\rm \frac{1}{2}+Re\left(\frac{Z_1}{Z_2}\right) = \frac{1}{2}+ Re (\frac{\omega }{\omega^2})\)
= \(\frac{1}{2}Re(\omega)^2\)
= \(\frac{1}{2}+ Re [ -\frac{1}{2} - \frac{\sqrt3}{2}i\)
= \(\frac{1}{2} + (-\frac{1}{2}) = 0\)
∴ Option (b) is correct.
Modulus of Complex Number Question 2:
Comprehension:
Direction : Consider the following for the items that follow :
Let Z 1 and Z 2 be any two complex numbers such that \(\rm Z_1^2+Z_2^2+Z_1Z_2=0\)
what is the value of \(\rm \left|\frac{Z_1}{Z_2}\right|\),
Answer (Detailed Solution Below)
Modulus of Complex Number Question 2 Detailed Solution
Explanation:
\(\rm Z_1^2+Z_2^2+Z_1Z_2=0\)
⇒ Z 1 = ω and Z 2 = ω 2
Now
⇒ \(|\frac{Z_1}{Z_2}| =| \frac{\omega }{(\omega)^2}| =|\frac{1}{\omega|}= 1\)
Option (a) is correct.
Modulus of Complex Number Question 3:
If \(\rm z=\frac{1}{3}\begin{vmatrix}i&2i&1\\\ 2i&3i&2\\\ 3&1&3\end{vmatrix}=x+iy;i=\sqrt{-1}\) then what is modulus of Z equal to?
Answer (Detailed Solution Below)
Modulus of Complex Number Question 3 Detailed Solution
Explanation:
Given
\(\rm z=\frac{1}{3}\begin{vmatrix}i&2i&1\\\ 2i&3i&2\\\ 3&1&3\end{vmatrix}\)
\(Z = \frac{1}{3}[[ (i9 – 2) – 2i (6i – 6) 1(2i – 9i)]\)
\(Z = \frac{1}{3}[3+3i] =1 + i \)
|Z| = \(√{1^2+1^2} =\) √2
∴ Option (b) is correct.
Modulus of Complex Number Question 4:
If z1 = 1 - 2i, z2 = 1 + i and z3 = 3 + 4i, then \(\left| {\left( {\frac{1}{{z_1}} + \frac{2}{{z_2}}}\right)\frac{{z_3}}{{z_2}}} \right| \)
Answer (Detailed Solution Below)
Modulus of Complex Number Question 4 Detailed Solution
Concept:
If z = a + ib , |z| = \(\sqrt{a^2\,+\,b^2}\)
If z = a + ib , \(\frac{1}{z}\) = \(\frac{a \,-\,ib}{{a^2\,+\,b^2}}\)
|z1z2| = |z1| × |z2|
Calculation:
Given z1 = 1 - 2i , z2 = 1 + i and z3 = 3 + 4i
∴ \(\frac{1}{z_{1}}\) = \(\frac{1\,+\,2i}{{1^2\,+\,2^2}}\) = \(\frac{1\,+\,2i}{{5}}\)
Similarly \(\frac{2}{z_{2}}\) = 2 × \(\frac{1}{z_{2}}\) = 2 × \(\frac{1\,-\,i}{{1^2\,+\,1^2}}\) = 2 × \(\frac{1\,-\,i}{{2}}\) = (1 - i)
\(\frac{2}{z_{2}}\) = (1 - i)
⇒ \(\frac{1}{z_{2}} \) = \(\frac{1-i}{2}\)
\(\frac{z_3}{z_2}\) = z3 × \(\frac{1}{z_{2}} \) = (3 + 4i) × \(\frac{1-i}{2}\)
⇒ \(\frac{z_3}{z_2}\) = \(\frac{7+i}{2}\)
We need to find \(\left| {\left( {\frac{1}{{z_1}} + \frac{2}{{z_2}}}\right)\frac{{z_3}}{{z_2}}} \right| \)
\(\left| {\left( {\frac{1}{{z_1}} + \frac{2}{{z_2}}}\right)\frac{{z_3}}{{z_2}}} \right| \) = \(\left| {\left( {\frac{1}{{z_1}} + \frac{2}{{z_2}}}\right)} \right| \) × \(\left | \frac{z_3}{z_2} \right|\)
= \(\left| {\left( {\frac{1\,+\,2i}{{5}} + (1-i)}\right)} \right|\) × \(\Big|\frac{7+i}{2}\Big|\)
= \(\Big|\frac{1+2i+5-5i}{5}\Big|\) × \(\Big|\frac{7+i}{2}\Big|\)
= \(\Big|\frac{6-3i}{5}\Big|\) × \(\Big|\frac{7+i}{2}\Big|\)
= \(\frac{\sqrt{6^2+(-3)^2}}{5} \times \frac{\sqrt{7^2+1^2}}{2}\)
= \(\frac{\sqrt{36+9}}{5} \times \frac{\sqrt{49+1}}{2}\)
= \(\frac{\sqrt{45}}{5} \times \frac{\sqrt{50}}{2} =\frac{\sqrt{45}}{5} \times \frac{5\sqrt2}{2}\)
= \(\frac{\sqrt{45} \times \sqrt2}{2}\)
= \(\frac{\sqrt{45} }{\sqrt2}\)
= \(\sqrt \frac{45}{2} \)
Evaluating , we get \(\sqrt \frac{45}{2} \).
Modulus of Complex Number Question 5:
If |z| = 4 and arg z = \(\frac{5π}{6}\), then z =
Answer (Detailed Solution Below)
Modulus of Complex Number Question 5 Detailed Solution
Concept
The general form of a complex number is z = x + iy. The polar representation of z
is z = r(cos θ + i sin θ). Here, r is the modulus of z and θ is called the amplitude or
argument of the complex number. The formula to find the amplitude of a complex
number is: \(\displaystyle \theta =tan^{-1}\frac{y}{x}\) and ∣z∣ = \(\sqrt {x^2+y^2}\)
Calculation
Given:
|z| = 4 and arg z = \(\displaystyle \frac{5π}{6}\)
Let z = |z| (cos θ + i sin θ) where θ = arg(z)
⇒ z = \(\displaystyle 4\left(cos\frac{5\pi}{6}+i \ sin\frac{5\pi}{6}\right)\)
⇒ z = \(\displaystyle 4\left(\frac{-√3}{2}+i \ \frac{1}{2}\right)\)
⇒ z = - 2√3 + 2i
∴ z = - 2√3 + 2i
Top Modulus of Complex Number MCQ Objective Questions
What is the modulus of \(\rm \dfrac{4+2i}{1-2i}\) where \(\rm i=\sqrt{-1} ?\)
Answer (Detailed Solution Below)
Modulus of Complex Number Question 6 Detailed Solution
Download Solution PDFConcept:
Let z = x + iy be a complex number, Where x is called real part of the complex number or Re (z) and y is called Imaginary part of the complex number or Im (z)Modulus of z = |z| = \(\rm \sqrt {x^2+y^2} = \sqrt {Re (z)^2+Im (z)^2}\)
Calculations:
Let \(\rm z= x + iy = \dfrac{4+2i}{1-2i}\)
\(\rm = \dfrac{4+2i}{1-2i}\times\dfrac{1+2i}{1+2i}\)
\(\rm= \dfrac{4+10i+4i^2}{1-4i^2}\)
As we know i2 = -1
\(\rm = \dfrac{4+10i-4}{1+4}\)
\(\rm x + iy =\dfrac{10i}{5} = 0 + 2i\)
As we know that if z = x + iy be any complex number, then its modulus is given by,|z| = \(\rm \sqrt{x^2+y^2}\)
∴ |z| = \(\rm \sqrt{0^2+2^2} = 2\)
Find the Modulus of the complex number \(\rm \frac {1+i}{1+\sqrt3 i}\)
Answer (Detailed Solution Below)
Modulus of Complex Number Question 7 Detailed Solution
Download Solution PDFConcept;
Modulus of a complex number z = x + iy is given by:
|z| = \(\rm \sqrt{x^2 + y^2}\)
(a + b)(a - b) = a2 - b2
Calculation:
If z = \(\rm \frac{z_1}{z_2}\) so, modulus of |z| = \(\rm \frac{|z_1|}{|z_2|}\)
z = \(\rm \frac {1+i}{1+\sqrt3 i}\)
|z| = \(\rm \frac {\sqrt {(1)^2 + (1)^2}}{\sqrt {(1)^2 + (\sqrt 3)^2}} = \frac{\sqrt 2}{2} = \frac {1}{\sqrt 2}\)
What is the modulus of \(\rm \left(\frac{1+i}{1-i} - \frac{1-i}{1+i}\right)\) where \(\rm i=\sqrt{-1} ?\)
Answer (Detailed Solution Below)
Modulus of Complex Number Question 8 Detailed Solution
Download Solution PDFConcept:
Let z = x + iy be a complex number, Where x is called the real part of the complex number or Re (z) and y is called the Imaginary part of the complex number or Im (z)Modulus of z = |z| = \(\rm \sqrt {x^2+y^2} = \sqrt {Re (z)^2+Im (z)^2}\)
Calculations:
Let \(\rm z = x+iy =\left(\frac{1+i}{1-i} - \frac{1-i}{1+i}\right)\)
\(\rm =\frac{(1+i)^2-(1-i)^2}{1^2-i^2}\\=\frac{1+2i+i^2-1+2i-i^2}{1+1}\\=\frac{4i}{2}=2i\)
z = x + iy = 0 + 2i
As we know that if z = x + iy be any complex number, then its modulus is given by, |z| = \(\rm \sqrt{x^2 + y^2}\)
∴ |z| = \(\rm \sqrt{0^2+2^2} = 2\)
What is the modulus of the complex number i2n + 1(-i)2n - 1, where n ∈ N and i = √-1?
Answer (Detailed Solution Below)
Modulus of Complex Number Question 9 Detailed Solution
Download Solution PDFConcept:
Iota power:
- i2 = -1, i3 = -i, i4 = 1, i4n = 1
- Number of the form 2n is always even, n ∈ N
- Numebr of the form 2n +1 or 2n - 1 is always odd, n ∈ N
- (-a)2n -1 = -(a)2n -1
Calculation:
Let,
Z = i2n + 1(-i)2n - 1
⇒ Z = i2n+1 × (i)2n-1 × (-1)2n-1
⇒ Z = i2n +1+2n-1 ×(-1)2n-1
⇒ Z = i4n × (-1) [∵ (-1)2n-1 = -1]
⇒ Z = (-1)4n ×
⇒ Z = i4n × (-1)
⇒ Z = -(i)4n × (-1)
⇒ Z = 1 × (-1) [∵ i4n = 1]
⇒ Z = -1
⇒ |Z| = |-1| = 1
Hence, the modulus of the complex number i2n + 1(-i)2n - 1 is 1.
Find the Modulus of the complex number \(\rm \frac {5- 5i}{3 - 4i}\)
Answer (Detailed Solution Below)
Modulus of Complex Number Question 10 Detailed Solution
Download Solution PDFConcept;
Modulus of a complex number z = x + iy is given by:
|z| = \(\rm \sqrt{x^2 + y^2}\)
(a + b)(a - b) = a2 - b2
Calculation:
Given: z = \(\rm \frac {5- 5i}{3 - 4i}\)
Mutiply by (3 + 4i) in denominator and numerator.
z = \(\rm (\frac {5- 5i}{3 - 4i}) \times (\frac{3 + 4i}{3 + 4i})\) = \(\rm 5[\frac {(1- i)(3+4i)}{(3)^2 - (4i)^2}]\) = \(\rm 5(\frac{3 + 4i - 3i - 4i^2}{25})\) (∵ i2 = -1)
z = \(\rm \frac {7 + i}{5}\)
|z| = \(\rm \frac{\sqrt{(7)^2 + (1)^2}}{5}= \frac{\sqrt{49 +1}}{5} = \frac{√{50}}{5} = \frac{5√2}{5}\)
|z| = √2
If z = \(\rm \frac{z_1}{z_2}\) so, modulus of |z| = \(\rm \frac{|z_1|}{|z_2|}\)
z = \(\rm \frac {5- 5i}{3 - 4i}\)
|z| = \(\rm \frac {\sqrt {(5)^2 + (5)^2}}{\sqrt {(3)^2 + (4)^2}} = \frac{√50}{√25} = \frac {5√2}{5}\)
|z| = √2
What is the modulus of (1 + i)2, Where \(\rm i = \sqrt{-1}\)
Answer (Detailed Solution Below)
Modulus of Complex Number Question 11 Detailed Solution
Download Solution PDFConcept:
Let z = x + iy be a complex number, Where x is called real part of the complex number or Re (z) and y is called Imaginary part of the complex number or Im (z)Modulus of z = |z| = \(\rm \sqrt {x^2+y^2} = \sqrt {Re (z)^2+Im (z)^2}\)
Calculations:
Let z = x + iy = (1 + i)2 = 12 + 2i + i2 (∵ (a + b)2 = a2 + b2 + 2ab)
z = 1 + 2i - 1 (∵ i2 = -1)
∴ z = x + iy = 2i
So, x = 0 and y = 2
As we know that if z = x + iy be any complex number, then its modulus is given by, |z| = \(\rm \sqrt{x^2+y^2}\)
∴ |z| = \(\rm \sqrt{(0)^2+{2}^2} = \sqrt 4 = 2\)
Find the modulus of z = (1 - i)4 ?
Answer (Detailed Solution Below)
Modulus of Complex Number Question 12 Detailed Solution
Download Solution PDFCONCEPT:
- i2 = - 1
- If z = x + iy then \(|z| = \sqrt{x^2 + y^2}\)
CALCULATION:
Given: z = (1 - i)4 First let's simplify the expression (1 - i)4
⇒ (1 - i)2 = 1 + i2 - 2i
As we know that, i2 = - 1
⇒ (1 + i)2 = -2i
Since (1 - i)4 = (1 - i)2 × (1 - i)2 we get:
⇒ (1 + i)4 = (-2i)2 = - 4
⇒ z = - 4 + 0i
As we know that, if z = x + iy then \(|z| = \sqrt{x^2 + y^2}\)
Here, x = - 4 and y = 0
⇒ \(|z| = \sqrt{(-4)^2 + 0^2} = \pm 4\)
As we know that, |z| denotes the distance between origin and z in the argand plane. So, |z| cannot be negative
⇒ |z| = 4
Hence, correct option is 2.
If z = 2i + 1, find the value of \(\rm\left| z + \overline z +1\over z + \overline z -1\right|\), where \(\rm \overline z\) is the conjugate of the complex number z
Answer (Detailed Solution Below)
Modulus of Complex Number Question 13 Detailed Solution
Download Solution PDFConcept:
The modulus of a complex number z = x + iy
|z| = \(\rm \sqrt{x^2+y^2}\)
The conjugate \(\rm \overline z\) = x - iy
Calculation:
z = 1+ 2i
\(\rm \overline z\)= 1 - 2i
S = \(\rm\left| z + \overline z +1\over z + \overline z -1\right|\)
S = \(\rm\left| 1+2i+1-2i+1\over 1+2i+1-2i -1\right|\)
S = \(\rm\left| 3\over 1\right|\)
S = 3
If iz3 + z2 - z + i = 0, then |z| is:
Answer (Detailed Solution Below)
Modulus of Complex Number Question 14 Detailed Solution
Download Solution PDFConcept:
If z = a + ib, then |z| = \(\rm \sqrt{a^2 + b^2}\)
Solution:
The given equation can be solved as:
iz3 + z2 - z + i = 0
⇒ iz3 + i2z + z2 + i = 0
⇒ iz(z2 + i) + (z2 + i) = 0
⇒ (z2 + i)(zi + 1) = 0
⇒ z2 + i = 0 or zi + 1 = 0
⇒ z2 = -i or z = i
|z| = 1 in both the cases.
What is the modulus of the complex number \(\rm \frac {\cos \theta - i \sin \theta}{\cos \theta + i \sin \theta}\) where \(\rm i = \sqrt {-1}\) ?
Answer (Detailed Solution Below)
Modulus of Complex Number Question 15 Detailed Solution
Download Solution PDFConcept:
Modulus of complex no. z = a + ib is given by |z| = \(\rm \sqrt{a^{2}+ b^{2}}\) .
Property of complex number:
\(\rm \left|\frac {z_1}{z_2}\right| = \frac {|z_1|}{|z_2|}\)
Calculation:
Let z = \(\rm \frac {\cos \theta - i \sin \theta}{\cos \theta + i \sin \theta}\)
Taking modulus on both sides, we get
⇒ |z| = \(\rm \left|\frac {\cos θ - i \sin θ}{\cos θ + i \sin θ}\right|\)
= \(\rm \frac {|\cos θ - i \sin θ|}{|\cos θ + i \sin θ|}\)
= \(\rm \frac {\sqrt {\cos^2 \theta + \sin^2 \theta}}{\sqrt {\cos^2 \theta + \sin^2 \theta}}\)
= 1