Integration using Trigonometric Identities MCQ Quiz - Objective Question with Answer for Integration using Trigonometric Identities - Download Free PDF
Last updated on Mar 19, 2025
Latest Integration using Trigonometric Identities MCQ Objective Questions
Integration using Trigonometric Identities Question 1:
If \(\rm \int e^{x}\left(\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}+\frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}}+\frac{x}{1-x^{2}}\right) d x=g(x)+C\), where C is the constant of integration, then g\(\left(\frac{1}{2}\right)\) equals :
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 1 Detailed Solution
Calculation
∵ \(\frac{d}{d x}\left(\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}\right)=\frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}}+\frac{x}{1-x^{2}}\)
⇒ \(\int e^{x}\left(\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}+\frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}}+\frac{x}{1-x^{2}}\right) d x\)
= \(e^{x} \cdot \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}+c=g(x)+C\)
Note : assuming g(x) = \(\frac{\mathrm{xe}^{\mathrm{x}} \sin ^{-1} \mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}\)
\(g(1 / 2)=\frac{\mathrm{e}^{1 / 2}}{2} \cdot \frac{\frac{\pi}{6} \times 2}{\sqrt{3}}=\frac{\pi}{6} \sqrt{\frac{\mathrm{e}}{3}}\)
Comment : In this question we will not get a unique function g(x), but in order to match the answer we will have to assume g(x) = \(\frac{\mathrm{xe}^{\mathrm{x}} \sin ^{-1} \mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}\).
Hence option 3 is correct
Integration using Trigonometric Identities Question 2:
\(\int \frac{2 \cos 2x}{(1 + \sin 2x)(1 + \cos 2x)} \, dx =\)
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 2 Detailed Solution
Calculation
Given integral: ∫ \(\frac{2\cos 2x}{(1+\sin 2x)(1+\cos 2x)}\) dx
⇒ ∫ \(\frac{2(1 - 2\sin^2 x)}{(1+2\sin x \cos x)(1+2\cos^2 x - 1)}\) dx
⇒ ∫ \(\frac{2(1 - 2\sin^2 x)}{(1+2\sin x \cos x)(2\cos^2 x)}\) dx
⇒ ∫ \(\frac{1 - 2\sin^2 x}{\cos^2 x (1+2\sin x \cos x)}\) dx
⇒ ∫ \(\frac{\cos^2 x - \sin^2 x}{\cos^2 x (1+2\sin x \cos x)}\) dx
⇒ ∫ \(\frac{\cos^2 x - \sin^2 x}{\cos^2 x ((\sin x + \cos x)^2)}\) dx
⇒ ∫ \(\frac{\cos^2 x - \sin^2 x}{\cos^2 x (\cos^2 x (1+\tan x)^2)}\) dx
⇒ ∫ \(\frac{\cos^2 x - \sin^2 x}{\cos^4 x (1+\tan x)^2}\) dx
⇒ ∫ \(\frac{1 - \tan^2 x}{\cos^2 x (1+\tan x)^2}\) dx
⇒ ∫ \(\frac{(1 - \tan x)(1 + \tan x)}{\cos^2 x (1+\tan x)^2}\) dx
⇒ ∫ \(\frac{1 - \tan x}{\cos^2 x (1+\tan x)}\) dx
⇒ ∫ \(\frac{\sec^2 x (1 - \tan x)}{(1+\tan x)}\) dx
Let t = 1 + tan x, then dt = sec2 x dx
⇒ ∫ \(\frac{1 - (t - 1)}{t}\) dt
⇒ ∫ \(\frac{2 - t}{t}\) dt
⇒ ∫ (\(\frac{2}{t} - 1\)) dt
⇒ 2 ln |t| - t + c
⇒ 2 ln |1 + tan x| - (1 + tan x) + c
⇒ 2 ln |1 + tan x| - tan x - 1 + c
⇒ 2 ln |1 + tan x| - tan x + C (where C = c - 1)
∴ The integral is 2 ln |1 + tan x| - tan x + C
Hence option 4 is correct
Integration using Trigonometric Identities Question 3:
\( \int \frac{2x^2 \cos(x^2) - \sin(x^2)}{x^2} \, dx \) =
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 3 Detailed Solution
Calculation
Let \(I = \int \frac{2x^2 \cos(x^2) - \sin(x^2)}{x^2} dx\)
\(I = \int \left( \frac{2x^2 \cos(x^2)}{x^2} - \frac{\sin(x^2)}{x^2} \right) dx\)
\(I = \int 2 \cos(x^2) dx - \int \frac{\sin(x^2)}{x^2} dx\)
Let's consider the derivative of \(\frac{\sin(x^2)}{x}\):
\(\frac{d}{dx} \left( \frac{\sin(x^2)}{x} \right) = \frac{2x^2 \cos(x^2) - \sin(x^2)}{x^2}\)
Therefore, \(I = \int \frac{d}{dx} \left( \frac{\sin(x^2)}{x} \right) dx\)
⇒ \(I = \frac{\sin(x^2)}{x} + C\)
∴ The integral is \(\frac{\sin(x^2)}{x} + C\)
Hence option 4 is correct
Integration using Trigonometric Identities Question 4:
If \(\int \frac{e^{x}(1+\sin x) d x}{1+\cos x}\) = ex f(x) + C, then f (x) is equal to
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 4 Detailed Solution
Calculation:
\(\int e^{x} \frac{(1+\sin x)}{(1+\cos x)} \mathrm{dx}\)
= \(\int e^{x}\left[\frac{1}{2} \sec ^{2} \frac{x}{2}+\tan \frac{x}{2}\right] \mathrm{dx}\)
= \(\frac{1}{2} \int e^{x} \sec ^{2} \frac{x}{2} \mathrm{dx}+\int e^{x} \tan \frac{x}{2} \mathrm{dx}\)
= \(e^{x} \tan \frac{x}{2}+C\)
But I = exf(x) + C (given)
∴ \(f(x)=\tan \frac{x}{2}\)
Hence option 3 is correct
Integration using Trigonometric Identities Question 5:
\(\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x=\)
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 5 Detailed Solution
Calculation
\(\int \frac{sin^2 x - cos^2 x}{sin^2 x cos^2 x} dx = \int (\frac{sin^2 x}{sin^2 x cos^2 x} - \frac{cos^2 x}{sin^2 x cos^2 x}) dx\)
⇒ \(\int (sec^2x - cosec^2x) dx\)
⇒ tan x + cot x + c
Hence option 1 is correct
Top Integration using Trigonometric Identities MCQ Objective Questions
Evaluate \(\rm \int cos^2 x\;dx\)
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 6 Detailed Solution
Download Solution PDFConcept:
1 + cos 2x = 2cos2 x
1 - cos 2x = 2sin2 x
\(\rm \int \cos x\;dx = \sin x + c\)
Calculation:
I = \(\rm \int cos^2 x\;dx\)
= \(\rm \int \frac{1+\cos 2x}{2}\;dx\)
= \(\rm \frac{1}{2}\int (1+\cos 2x)\;dx\)
= \(\rm \frac{1}{2} \left[x+\frac{\sin 2x}{2} \right ] + c\)
= \(\rm \frac{x}{2}+\frac{\sin 2x}{4} + c\)
Evaluate: \(\smallint \frac{{1 - \cos 2{\rm{x}}}}{{1 - {{\sin }^2}{\rm{x}}}}{\rm{\;dx}}\)
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 7 Detailed Solution
Download Solution PDFConcept:
1 - cos 2x = 2 sin2 x
1 – sin2 x = cos2 x
\(\smallint {\sec ^2}{\rm{xdx}} = \tan {\rm{x}} + {\rm{c}}\)
Calculation:
Let I = \(\smallint \frac{{1 - \cos 2{\rm{x}}}}{{1 - {{\sin }^2}{\rm{x}}}}{\rm{\;dx}}\)
\( = \smallint \frac{{2{{\sin }^2}{\rm{x}}}}{{{{\cos }^2}{\rm{x}}}}{\rm{\;dx}}\)
\( = 2\smallint {\tan ^2}{\rm{xdx}}\)
\( = 2\smallint \left( {{{\sec }^2}{\rm{x}} - 1} \right){\rm{dx}}\)
= 2 [tan x – x] + c
= 2 tan x – 2x + c
Evaluate: ∫ secn x tan x dx
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 8 Detailed Solution
Download Solution PDFConcept:
- \(\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1\)
-
\(\frac{d}{dx}\sec x=\sec x\, \tan x\)
Calculation:
We have,
∫ secn x tan x dx
⇒ ∫ sec n - 1 x (sec x tan x) dx ----(1)
Let sec x = t
⇒ sec x tan x dx = dt
On substituting these values in equation (1), we get
∫ t n - 1 dt
\(\Rightarrow \frac{t^n}{n}+C\)
\(\Rightarrow \frac{1}{n}\sec ^n x+C\)
Hence, ∫ secn x tan x dx = \(\frac{1}{n}\sec ^n x+C\)
If \(\rm \int \sqrt{1 - sin 2x} \space dx\) = A sinx + B cosx + C, where 0 < x < \(\frac{\pi}{4}\), then which one of the following is correct?
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 9 Detailed Solution
Download Solution PDFConcept:
sin2x + cos2x = 1
\(\rm \int sin x dx = -cosx \)
\(\rm \int cos x dx = sin x \)
Calculation:
We have \(\rm \int \sqrt{1 - sin 2x} \space dx\) = A sinx + B cosx + C
⇒ \(\rm \int (\sqrt{sin^{2}x + cos^{2}x - 2sinx cosx} )dx\) = A sinx + B cosx + C
⇒ \(\rm \int (\sqrt{(sinx - cosx)^{2}})dx\) = A sinx + B cosx + C
⇒ \(\rm \int (|(sinx - cosx)|)dx\) = A sinx + B cosx + C ----(i)
If 0 < x < \(\frac{\pi}{4}\), then sinx < cosx
⇒ |sinx - cosx| = -sinx + cosx -----(ii)
Now from (i) and (ii), we get
⇒ \(\rm \int (-\space sinx + cosx) \space dx\) = A sinx + B cosx + C
⇒ cosx + sinx + C = A sinx + B cosx + C
On comparing A = 1, B = 1 and C = 0
Hence, A + B - 2 = 0 is correct.
Integral of sec2 x with respect to sec x is
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 10 Detailed Solution
Download Solution PDFConcept:
\( \rm \int x^n dx = \frac{x^{n+1}}{n+1}+c\)
Calculation:
To Find: Integral of sec2 x with respect to sec x
\(\rm \int \sec^2 x\; d(\sec x)\)
Replace sec x = t, we get
\(= \rm \int t^2 dt\\= \frac{t^3}{3}+c\\=\frac{\sec^3 x}{3}+c\)
\(\smallint \sin {\rm{x}}^\circ {\rm{dx}}\) is equal to ?
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 11 Detailed Solution
Download Solution PDFConcept:
180° = π radian
\(\smallint \sin {\rm{xdx}} = {\rm{\;}} - \cos {\rm{x}} + {\rm{c}}\)
Calculation:
As we know that, 180° = π radian
∴ 1° = \(\frac{{\rm{\pi }}}{{180}}\) radian
So, x° = \(\frac{{\rm{\pi x }}}{{180}}\) radian
Let I = \(\smallint \sin {\rm{x}}^\circ {\rm{dx}}\)
\( = \smallint \sin \frac{{{\rm{\pi x}}}}{{180}}{\rm{dx}}\)
Let \(\frac{{\rm{\pi x }}}{{180}}\)= t
⇒ dx = \(\frac {180}{\pi}\) dt
\({\rm{I}} = \frac{{180}}{{\rm{\pi }}}\smallint \sin {\rm{tdt}} = {\rm{\;}} - \frac{{180\cos {\rm{t}}}}{{\rm{\pi }}} + {\rm{c}} = {\rm{\;}} - \frac{{180\cos {\rm{x}}^\circ }}{{\rm{\pi }}} + {\rm{c}}\)
What is \(\rm \int{{\left( \frac {1}{\cos^2 x} - \frac {1}{\sin^2 x} \right)}} dx\) equal to ?
Where c is the constant of integration
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 12 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \sec^{2}xdx = \tan x + c \\ \rm \int cosec^{2}xdx = -\cot x+c\)
Calculation:
Let I = \(\rm \int{{\left( \frac {1}{\cos^2 x} - \frac {1}{\sin^2 x} \right)}} dx\)
\(= \rm \int \sec^{2}xdx - \rm \int cosec^{2}xdx\)
= tan x - (-cot x) + c
\(= \rm \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}+c \\ =\frac{\sin^2 x+ \cos^2 x}{\sin x \cos x}+c \\ = \frac{1}{\sin x \cos x}+c\)
\(= \rm \frac{2}{2\sin x \cos x} +c\\= \frac{2}{\sin2x}+c\) (∵ 2 sin x cos x = sin 2x)
= 2 cosec 2x + c
\(\int {\frac{{{e^x}\left( {1 + \sin x} \right)}}{{1 + \cos x}}} dx\) is equal to
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 13 Detailed Solution
Download Solution PDFFormula:
\(\int {e}^x [f(x) + f'(x)] dx = e^x f(x) + C\)
Calculation:
Let \(I = \int e^x . \frac{1 + sinx}{1 + cos x} dx\)
⇒ \(I = \int e^x . \frac{1 + 2sin\frac{x}{2}cos \frac{x}{2}}{ 2cos^2 \frac{x}{2}} dx\)
⇒ \(I = \int e^x . [\frac{1}{2 cos^2\frac{x}{2}} + \frac{2 sin\frac{x}{2} cos\frac{x}{2}}{2 cos^2\frac{x}{2}}] dx\)
⇒ \(I = \int e^x . [\frac{1}{2} sec^2 \frac{x}{2} + tan \frac{x}{2}] dx\)
The above integrand is of the form \(\int {e}^x [f(x) + f'(x)] dx\)
\(f(x) = tan \frac{x}{2}\)
\(f'(x) = \frac{1}{2} sec^2 \frac{x}{2}\)
\(∴\ I = e^x f(x) + c\)
\(I = e^x tan \frac{x}{2} + c\)
Evaluate: \(\smallint \frac{{1 + \cos 2{\rm{x}}}}{{1 - {{\cos }^2}{\rm{x}}}}{\rm{\;dx}}\)
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 14 Detailed Solution
Download Solution PDFConcept:
1 + cos 2x = 2 cos2 x
1 – cos2 x = sin2 x
\(\smallint {\rm{cose}}{{\rm{c}}^2}{\rm{xdx}} = - \cot {\rm{x}} + {\rm{c}}\)
Calculation:
Let I = \(\smallint \frac{{1 + \cos 2{\rm{x}}}}{{1 - {{\cos }^2}{\rm{x}}}}{\rm{\;dx}}\) ---- (∵ 1 + cos 2x = 2 cos2 x and 1 – cos2 x = sin2 x)
\(= \smallint \frac{{2{{\cos }^2}{\rm{x}}}}{{{{\sin }^2}{\rm{x}}}}{\rm{\;dx}}\)
\(= 2\smallint {\cot ^2}{\rm{xdx}}\)
\( = 2\smallint \left( {{\rm{cose}}{{\rm{c}}^2}{\rm{x}} - 1} \right){\rm{dx}}\)
= 2 [-cot x – x] + c
= -2 cot x – 2x + c
Find the value of \(\rm \int{ {cos2x}\over {cosx} }dx\)
Answer (Detailed Solution Below)
Integration using Trigonometric Identities Question 15 Detailed Solution
Download Solution PDFConcept:
Some useful formulas are:
∫cosx dx = sinx + c
∫ secx dx = ln(sec x + tan x) + c
cos2θ = 2cos2θ - 1
\(\rm 1\over cos θ \)= secθ
Calculation:
Given integration is, \(\rm ∫{ {cos2x}\over {cosx} }dx\)
= \(\rm ∫{ {2cos^2x-1}\over {cosx} }dx\)
= \(\rm ∫({ {{2cos^2x}\over {cosx}}-{{1}\over {cosx} }})dx\)
= \(\rm ∫({ {{2cosx}}-{secx} })dx\)
= 2sinx - ln(sec x + tan x) + C, C = constant of integration