Integration using Substitution MCQ Quiz - Objective Question with Answer for Integration using Substitution - Download Free PDF

Last updated on Apr 8, 2025

Latest Integration using Substitution MCQ Objective Questions

Integration using Substitution Question 1:

The integral \(\rm I=\int\frac{\sqrt{\tan x}}{\sin x \cos x}dx\) is equal to

(Where c in constant of integration) 

  1. \(\rm \log(\tan \frac{x}{2})+c\)
  2. log (sin x) + c
  3. \(\rm 2\sqrt{\tan x}+c\)
  4. -tan-1(cos x) + c
  5. log (tan x) + c

Answer (Detailed Solution Below)

Option 3 : \(\rm 2\sqrt{\tan x}+c\)

Integration using Substitution Question 1 Detailed Solution

Explanation:

\(\rm I=\int\frac{\sqrt{\tan x}}{\sin x \cos x}dx\)

   = \(\int\frac{\sqrt{\tan x}}{\tan x \cos^2 x}dx\)

  = \(\int\frac{\sqrt{\tan x}}{\tan x} \sec^2 xdx\)

  = \(\int\frac{1}{\sqrt{\tan x}} \sec^2 xdx\)

Let tan x = t2 ⇒ sec2x dx = 2tdt

So, I = \(\int\frac{2t}{t}dt\)

        = 2t + c

      = \(\rm 2\sqrt{\tan x}+c\)

Option (3) is true.

Integration using Substitution Question 2:

Evaluate the following: \(\rm \int \frac{e^x(x+1)}{\cos^2(xe^x)}dx\) 

  1. cos(xex) + c
  2. tan(xex​) + c
  3. sec(xex​) tan(xex) + c
  4. -cot(xex​) + c
  5. xex

Answer (Detailed Solution Below)

Option 2 : tan(xex​) + c

Integration using Substitution Question 2 Detailed Solution

Concept Used:

d(u × v) = u × dv + v × du

Calculation:

\(\rm ∫ \frac{e^x(x+1)}{\cos^2(xe^x)}dx\)

Let xex = t 

Differential with respect to t

(xex + ex) dx = dt 

e(x + 1) dx = dt 

Now, ∫(1/cos2t) dt

⇒ ∫sec2t dt 

⇒ tant + c

∴​ \(\rm ∫ \frac{e^x(x+1)}{\cos^2(xe^x)}dx\) = tan(xex) + c

Integration using Substitution Question 3:

Evaluate \(\rm \int\frac{\sec x}{\sqrt{\cos 2x}}dx\)

  1. cos-1 (tan x) + c
  2. sin-1 (tan x) + c
  3. sec-1 (tan x) + c
  4. -sec-1 (tan x) + c
  5. -sec-1 cos-1 (tan x)

Answer (Detailed Solution Below)

Option 2 : sin-1 (tan x) + c

Integration using Substitution Question 3 Detailed Solution

Formula Used:

cos2x = cos2x - sin2x

tanx = sinx/cosx

\(\rm \int\frac{1}{\sqrt{1-x^2}}dx \) = sin-1x + c

Calculation:

Let,

I = \(\rm ∫\frac{\sec x}{√{\cos 2x}}dx\)

⇒ I =  \(\rm \int\frac{\sec x}{\sqrt{\cos^2x-sin^2x}}dx\)

⇒ I = \(\rm \int\frac{\sec x}{cosx\sqrt{1-tan^2x}}dx\)

⇒ I = \(\rm \int\frac{\sec^2 x}{\sqrt{1-tan^2x}}dx\)

Let tanx = t 

Differential with respect to t

⇒ I = (sec2x) dx = dt

⇒ I = \(\rm \int\frac{1}{\sqrt{1-t^2}}dt\)

⇒ sin-1t + c

∴ sin-1(tanx) + c

Integration using Substitution Question 4:

\(\int {\frac{{dx}}{{1 + \sin x}}} \)  equals

  1. tan x + sec x + c
  2. tan x - sec x + c
  3. secx - cosec2 x + c
  4. sec x - sec x tan x + c
  5. tan x

Answer (Detailed Solution Below)

Option 2 : tan x - sec x + c

Integration using Substitution Question 4 Detailed Solution

Solution

⇒ \(\int {\frac{{dx}}{{1 + \sin x}}} \)

Dividing and multiplying the term by its conjugate.

 \(\int {\frac{{dx}}{{1 + \sin x}}} \) × \(1 - sinx \over1 + sinx\)dx

⇒ \(\int {\frac{{1-sinx}}{{1 - \sin^2 x}}} \)  ...(1 - sin2x = cos2x)

⇒ \(\int {\frac{{1-sinx}}{{cos^2 x}}} \) = \(\int {\frac{{1}}{{cos^2 x}}}- {\frac{{sinx}}{{cos^2 x}}}\) 

Since, (1/cos2x = sec2x and sin/cos2x = tan x × sec x) 

∫(sec2x - tan x sec x) dx

∫sec2x dx - ∫tan x sec x dx

⇒ tan x - sec x + c

The correct option is 2.

Integration using Substitution Question 5:

\(\displaystyle\int \frac{\sin x+\cos x}{\sqrt{\sin 2x}}\) dx equals :

  1. cosec−1(sin x + cos x) + C
  2. cosec−1(sin x − cos x) + C
  3. sin−1(sin x − cos x) + C
  4. sin−1(\(\sqrt{\sin x−\cos x}\)) + C
  5. \(\sqrt{\sin x−\cos x}\)

Answer (Detailed Solution Below)

Option 3 : sin−1(sin x − cos x) + C

Integration using Substitution Question 5 Detailed Solution

Formula Used:

\(\int{\frac{dx}{\sqrt{1-x^2}}}=\sin ^{-1}x+C \)

2 sin x cos x =sin 2x

Calculation:

Let \(I=\displaystyle​\int \frac{\sin x+\cos x}{\sqrt{\sin 2x}}dx\) . . .(1)

Now, Put sin x - cos x = t

⇒​ ( sin x + cos x ) dx = dt

and (sin x - cos x)2 = t2

⇒ 1 - 2 sin x cos x =  t2

⇒ 1 - sin 2x =  t2

⇒ 1 - t =  sin 2x

Substituting all the values in (1)

\(I=\displaystyle​\int \frac{dt}{\sqrt{1 -t^2}}\)

\(I=\sin ^{-1}t+C \)

\(I=\sin ^{-1}(\sin x - \cos x)+C \)

Top Integration using Substitution MCQ Objective Questions

\(\rm \int \frac {1}{\sqrt{16-25x^2}}dx\) is equal to ?

  1.  \(\rm \sin^{-1} \left(\frac {5x} {4} \right)\) + c
  2.  \(\rm \frac 1 5 \sin^{-1} \left(\frac {5x} {4} \right)\) + c
  3.  \(\rm \frac 1 5 \sin^{-1} \left(\frac {x} {4} \right)\) + c
  4.  \(\rm \frac 1 5 \sin^{-1} \left(\frac {4x} {5} \right)\) + c

Answer (Detailed Solution Below)

Option 2 :  \(\rm \frac 1 5 \sin^{-1} \left(\frac {5x} {4} \right)\) + c

Integration using Substitution Question 6 Detailed Solution

Download Solution PDF

Concept:

\(\rm \int \frac{1}{\sqrt{a^2-x^2}}dx= \sin^{-1 } \left(\frac{x}{a} \right ) + c\)

Calculation:

I = \(\rm \int \frac {1}{\sqrt{16-25x^2}}dx\)

\(\rm \int \frac {1}{\sqrt{16-(5x)^2}}dx\)

Let 5x = t

Differentiating with respect to x, we get

⇒ 5dx = dt

⇒ dx = \(\rm \frac {dt}{5}\)

Now,

I = \(\rm \frac {1}{5}\int \frac {1}{\sqrt{4^2-t^2}} dt\)

\(\rm \frac 1 5 \sin^{-1} \left(\frac t 4 \right)\) + c

\(\rm \frac 1 5 \sin^{-1} \left(\frac {5x} {4} \right)\) + c

\(\rm \int \sqrt{2x+3}\;dx\) is equal to?

  1. \(\rm \frac {(2x+3)^{1/2}}{3} + c\)
  2. \(\rm \frac {(2x+3)^{3/2}}{2} + c\)
  3. \(\rm \frac {(2x+3)^{3/2}}{3} + c\)
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : \(\rm \frac {(2x+3)^{3/2}}{3} + c\)

Integration using Substitution Question 7 Detailed Solution

Download Solution PDF

Concept:

\(\rm \int x^n dx = \frac{x^{n+1}}{n+1} +c\)

 

Calculation:

I = \(\rm \int \sqrt{2x+3}\;dx\)

Let 2x + 3 = t2

Differenating with respect to x, we get

⇒ 2dx = 2tdt

⇒ dx = tdt

Now,

I = \(\rm \int \sqrt{t^2}\; \times tdt\)

\(\rm \int t^2 \;dt\)

\(\rm \frac {t^3}{3} + c\)

∵ 2x + 3 = t2

⇒  (2x + 3)1/2 = t

⇒ (2x + 3)3/2 = t3

⇒ I = \(\rm \frac {(2x+3)^{3/2}}{3} + c\)

\(\rm \int \sin 5x\;dx = \)

  1. \(\rm \frac{\cos 5x}{5} + c\)
  2. \(\rm \frac{-\cos 5x}{5} + c\)
  3. 5cos 5x + c
  4. \(\rm \frac{-\cos 4x}{5} + c\)

Answer (Detailed Solution Below)

Option 2 : \(\rm \frac{-\cos 5x}{5} + c\)

Integration using Substitution Question 8 Detailed Solution

Download Solution PDF

Concept:

\(\rm \int \sin x \; dx = -\cos x + c\)

Calculation:

I = \(\rm \int \sin 5x\;dx \)

Let 5x = t

Differentiating with respect to x, we get

⇒ 5dx = dt

⇒ dx = \(\rm \frac{dt}{5} \)

Now,

I = \(\rm \frac 1 5 \int \sin t\;dt \)

\(\rm \frac 1 5 (-\cos t) + c\)

\(\rm \frac{-\cos 5x}{5} + c\)

What is the integral of f(x) = 1 + x2 + x4 with respect to x2?

  1. \(\rm x + \frac{x^3}{3}+\frac{x^5}{5}+C\)
  2. \(\rm \frac{x^3}{3}+\frac{x^5}{5}+C\)
  3. \(\rm x^2 + \frac{x^4}{4}+\frac{x^6}{6}+C\)
  4. \(\rm x^2 + \frac{x^4}{2}+\frac{x^6}{3}+C\)

Answer (Detailed Solution Below)

Option 4 : \(\rm x^2 + \frac{x^4}{2}+\frac{x^6}{3}+C\)

Integration using Substitution Question 9 Detailed Solution

Download Solution PDF

Concept: 

\(\rm \int x^{n}\space dx = \frac{x^{n + 1}}{n + 1} + C\)

\(\rm \int f(x) \space dx^2\) = \(\rm \int (1 + x^{2} + x^{4}) \space d(x^2)\)      ....(i)

Calculation:

Let, x2 = u

From equation (i)

\(\rm \int f(x) \space dx^2\) = \(\rm \int (1 + u + u^{2}) \space du\)

⇒ u + \(\rm \frac{u^{2}}{2}\) + \(\rm \frac{u^{3}}{3}\)+ C

Now putting the value of u,

​⇒ \(\rm \int f(x)dx^2\) = x2 +​ \(\rm \frac{x^{4}}{2}\) + \(\rm \frac{x^{6}}{3}\) + C

∴ The required integral is x2 +​ \(\rm \frac{x^{4}}{2}\) + \(\rm \frac{x^{6}}{3}\) + C.

\(\rm \int \sqrt{4x-3}\;dx\) is equal to?

  1. \(\rm \frac {(4x+3)^{3/2}}{6} + c\)
  2. \(\rm \frac {(4x-3)^{3/2}}{3} + c\)
  3. \(\rm \frac {(4x-3)^{3/2}}{6} + c\)
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : \(\rm \frac {(4x-3)^{3/2}}{6} + c\)

Integration using Substitution Question 10 Detailed Solution

Download Solution PDF

Concept:

\(\rm \int x^n dx = \frac{x^{n+1}}{n+1} +c\)

Calculation:

I = \(\rm \int \sqrt{4x-3}\;dx\)

Let 4x - 3 = t2

Differenating with respect to x, we get

⇒ 4dx = 2tdt

⇒ dx = \(\rm \frac t 2\)dt

Now,

I = \(\rm \int \sqrt{t^2}\; \times \frac t 2 dt\)

\(\frac12 \rm \int t^2 \;dt\)

\(\rm \frac {t^3}{6} + c\)

\(\rm \frac {(4x-3)^{3/2}}{6} + c\)

\(\rm \int{x\over1+x^2}\;dx = \)

  1. \(\rm \log (1 + x^2) + c\)
  2. \(\rm \log \sqrt{(1 + x^2)} + c\)
  3. 2\(\rm \log (1 + x^2) + c\)
  4. None of these

Answer (Detailed Solution Below)

Option 2 : \(\rm \log \sqrt{(1 + x^2)} + c\)

Integration using Substitution Question 11 Detailed Solution

Download Solution PDF

Concept:

Integral property:

  • ∫ xn dx = \(\rm x^{n+1}\over n+1\)+ C ; n ≠ -1
  • \(\rm∫ {1\over x} dx = \ln x\) + C
 
 

Calculation:

Let I = \(\rm \int{x\over1+x^2} \;dx\)

I = \(\rm \frac 12 \int{2x\over1+x^2} \;dx\)

Let 1 + x2 = t

⇒ 2x dx = dt

I = \(\rm \frac 12 \int{1\over t } dt\)

\(\rm \frac 12 \log t + c\)

\(\rm \frac 12 \log (1 + x^2) + c\)

\(\rm \log \sqrt{(1 + x^2)} + c\)              [∵ n log m = log mn]

If \(I_1 = \displaystyle\int_e^{e^2} \dfrac{dx}{\log x}\)and \(I_2 = \displaystyle\int_1^2 \dfrac{e^x}{x} dx\) then

  1. I1 - I2 = 0
  2. I2 = 2I1
  3. I1 = 2I2
  4. I1 + I2 = 0

Answer (Detailed Solution Below)

Option 1 : I1 - I2 = 0

Integration using Substitution Question 12 Detailed Solution

Download Solution PDF

Calculation:

Given:\(I_1 = \displaystyle\int_e^{e^2} \dfrac{dx}{\log x}\) and \(I_2 = \displaystyle\int_1^2 \dfrac{e^x}{x} dx\)

⇒ \(I_1 = \displaystyle\int_e^{e^2} \dfrac{dx}{\log x}\) put log x = z

Such that x = ez

Such that dx = ez dz 

when x = e, z = loge

x = e2, z = log e2 = 2 log e = z 

Such that I1 = \(\displaystyle\int_{1}^{2}\)(ez dz) / z =\(\displaystyle\int_{1}^{2}\)(ex/z) dx = I2

Such that I1 = I2

I1 - I2 = 0 

Find the \(\smallint \frac{2}{{{\rm{sin}}2{\rm{x}}.{\rm{log}}\left( {{\rm{tanx}}} \right)}}\)

  1. log (sin x) + c
  2. log (cos x) + c
  3.  log (tan x) + c
  4.  log [log(tan x)] + c

Answer (Detailed Solution Below)

Option 4 :  log [log(tan x)] + c

Integration using Substitution Question 13 Detailed Solution

Download Solution PDF

Concept:

sin 2x = 2sin x cos x

∫(1/x)dx = log x + c

∫tanx dx = sec2x + c  

Calculation:

Let I = \(\smallint \frac{2}{{\sin 2{\rm{x}}.\log \left( {{\rm{tanx}}} \right)}}\)         ....(1)

Take log (tan x) = t

\(\rm \frac1 {\tan x}(se{c^2}x)dx = dt\)

⇒ \( \frac{{{\rm{cosx}}}}{{{\rm{sinx}}.{\rm{\;co}}{{\rm{s}}^2}{\rm{x}}}}{\rm{\;dx}} = {\rm{dt}}\)

⇒ \( \frac{1}{{{\rm{sinx}}.{\rm{cosx}}}}{\rm{dx}} = {\rm{dt}}\)

⇒ dx = sin x.cos x dt

Putting the value of log (tan x) and dx in equation (i)

Now, I = \(\rm \smallint \frac{2}{{2sinx.cosx.t}}\;sinx.cosx\;dt\)

= ∫ \(\rm \frac 1 t\)dt

= log t + c

= log [log(tan x) ]+ c

\(\rm \int \frac{1}{e^x+e^{-x}}dx=\)

  1. log |cot(ex) + tan(ex)|
  2. \(\rm sin^{-1}(e^x)+c\)
  3. log |1 + ex|
  4. \(\rm tan^{-1}(e^x)+c\)

Answer (Detailed Solution Below)

Option 4 : \(\rm tan^{-1}(e^x)+c\)

Integration using Substitution Question 14 Detailed Solution

Download Solution PDF

Concept:

\(\rm \int \frac{1}{1+x^2}dx=tan^{-1}x+c\)

\(\rm x^{-1}=\frac1x\)

 

Calculation:

Let, I = \(\rm \int \frac{1}{e^x+e^{-x}}dx\)

\(\rm \int \frac{1}{e^x+\frac{1}{e^{x}}}dx\)                (∵ \(\rm x^{-1}=\frac1x\))

\(\rm \int \frac{e^x}{e^{2x}+{1}}dx\)

Now, let ex = t

⇒ ex dx = dt

∴ I = \(\rm \int \frac{dt}{t^2+{1}}\)

\(\rm tan^{-1}t+c\)             (∵ \(\rm \int \frac{1}{1+x^2}dx=tan^{-1}x+c\))

\(\rm tan^{-1}(e^x)+c\)         (∵ ex = t)

Hence, option (4) is correct. 

What is ∫ cot 2x dx is equal to?

  1. \(\rm \log |\sin 2x| + c\)
  2. \(\rm \frac 1 2 \log |\sin 2x| + c\)
  3. \(\rm \frac 1 2 \log |\sec 2x| + c\)
  4. \(\rm \log |\sec 2x| + c\)

Answer (Detailed Solution Below)

Option 2 : \(\rm \frac 1 2 \log |\sin 2x| + c\)

Integration using Substitution Question 15 Detailed Solution

Download Solution PDF

Concept:

\(\rm \int \frac{1}{x}dx = \log |x| + c\)

 

Calculation:

I = ∫ cot 2x dx

\(=\rm \int \frac{\cos 2x}{\sin 2x}dx\)

Let sin 2x = t

Differentiating with respect to x, we get

⇒ 2 cos 2x dx = dt

⇒ cos 2x dx = \(\rm \frac {dt}{2}\)

\(\rm I =\rm \frac 1 2\int \frac{1}{t}dt\)

\(\rm \frac 1 2 \log |t| + c\)

\(\rm \frac 1 2 \log |\sin 2x| + c\)

Get Free Access Now
Hot Links: teen patti master gold teen patti 3a teen patti master teen patti