\(\rm \sec \left(\tan^{-1}\dfrac{y}{2}\right)\) चे मूल्य किती आहे?

  1. \(\rm \dfrac{y^2+4}{2}\)
  2. \(\rm \dfrac{y^2+1}{4}\)
  3. \(\rm \dfrac{\sqrt{y^2+2}}{4}\)
  4. \(\rm \dfrac{\sqrt{y^2+4}}{2}\)

Answer (Detailed Solution Below)

Option 4 : \(\rm \dfrac{\sqrt{y^2+4}}{2}\)
Free
NDA 01/2025: English Subject Test
5.3 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

  • 1 + tan2 x = sec2 x.
  • tan (tan-1 x) = x.

 

गणना:

असे म्हणूया की \(\rm \tan^{-1}\dfrac{y}{2}=\theta\), जिथे =\(\rm \theta \in \left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]\).

\(\rm \Rightarrow \tan \theta = \dfrac{y}{2}\)

\(\rm \Rightarrow \tan^2 \theta = \dfrac{y^2}{4}\)

\(\rm \Rightarrow 1+\tan^2 \theta = 1+\dfrac{y^2}{4}=\dfrac{y^2+4}{4}\)

\(\rm \Rightarrow \sec^2 \theta = \dfrac{y^2+4}{4}\)

\(\rm \Rightarrow \sec \theta = \dfrac{\sqrt{y^2+4}}{2}\)

\(\rm \Rightarrow \sec \left(\tan^{-1}\dfrac{y}{2}\right) = \dfrac{\sqrt{y^2+4}}{2}\).

Latest NDA Updates

Last updated on May 30, 2025

->UPSC has released UPSC NDA 2 Notification on 28th May 2025 announcing the NDA 2 vacancies.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced for cycle 2. The written examination will be held on 14th September 2025.

-> Earlier, the UPSC NDA 1 Exam Result has been released on the official website.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

Get Free Access Now
Hot Links: teen patti real money app all teen patti teen patti comfun card online