Question
Download Solution PDFIf x + \(\frac{1}{2x}\) = 3, then evaluate 8x3 + \(\rm \frac{1}{x^3}\).
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFGiven:
x + \(\frac{1}{2x}\) = 3
Concept Used:
Simple calculations is used
Calculations:
⇒ x + \(\frac{1}{2x}\) = 3
On multiplying 2 on both sides, we get
⇒ 2x + \(\frac{1}{x}\) = 6 .................(1)
Now, On cubing both sides,
⇒ \((2x + \frac{1}{x})^3 = 6^3\)
⇒ \(8x^3 + \frac{1}{x^3} + 3(4x^2)(\frac{1}{x})+3(2x)(\frac{1}{x^2})=216\)
⇒ \(8x^3 + \frac{1}{x^3} + 12x+\frac{6}{x}=216\)
⇒ \(8x^3 + \frac{1}{x^3}= 216 - 6(2x+\frac{1}{x})\)
⇒ \(8x^3 + \frac{1}{x^3}= 216- 6(6)\) ..............from (1)
⇒ \(8x^3 + \frac{1}{x^3}= 216- 36\)
⇒ \(8x^3 + \frac{1}{x^3}= 180\)
⇒ Hence, The value of the above equation is 180
Last updated on Jun 13, 2025
-> The SSC CGL Notification 2025 has been released on 9th June 2025 on the official website at ssc.gov.in.
-> The SSC CGL exam registration process is now open and will continue till 4th July 2025, so candidates must fill out the SSC CGL Application Form 2025 before the deadline.
-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.
-> The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.
-> Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.
-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.
-> The CGL Eligibility is a bachelor’s degree in any discipline.
-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.
-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.
-> Candidates should also use the SSC CGL previous year papers for a good revision.