If V1, V2 are volumes and S1, S2 are the surface areas of two cubes then

  1. \(\rm s^3_1 v_1^2=s^3_2 v^2_2\)
  2. \(\rm \frac{s_1}{s_2}=\left(\frac{v_1}{v_2} \right)^{\frac{2}{3}}\)
  3. \(\rm \frac{v_1}{v_2}=\left(\frac{s_1}{s_2} \right)^{\frac{2}{3}}\)
  4. \(\rm v_1 s_1^2=v_2 s^2_2\)

Answer (Detailed Solution Below)

Option 2 : \(\rm \frac{s_1}{s_2}=\left(\frac{v_1}{v_2} \right)^{\frac{2}{3}}\)

Detailed Solution

Download Solution PDF

Given:

V1, V2 are the volumes of two cubes.

S1, S2 are the surface areas of two cubes.

Formula used:

Volume of a cube = (Side)3

⇒ V1 = a13, V2 = a23

Surface area of a cube = 6 × (Side)2

⇒ S1 = 6a12, S2 = 6a22

Calculation:

Ratio of volumes:

⇒ V1 / V2 = (a1 / a2)3

Taking cube root on both sides:

⇒ (V1 / V2)1/3 = a1 / a2

Ratio of surface areas:

⇒ S1 / S2 = (a12 / a22)

Substituting a1 / a2:

⇒ S1 / S2 = (V1 / V2)2/3

⇒ \(\rm \frac{s_1}{s_2}=\left(\frac{v_1}{v_2} \right)^{\frac{2}{3}}\)

∴ The required ratio of S1 and S2 is \(\rm \frac{s_1}{s_2}=\left(\frac{v_1}{v_2} \right)^{\frac{2}{3}}\).

More Mensuration Questions

Get Free Access Now
Hot Links: teen patti download apk teen patti baaz lucky teen patti teen patti gold new version 2024