जब बहुपद r(x) = ax + b को बहुपद p(x) = 4x⁴ + 2x³ - 2x² + x - 1 में जोड़ा जाता है, तो परिणामी बहुपद बहुपद q(x) = x² + 2x - 3 से विभाज्य है। (a - b) का मान क्या है?

This question was previously asked in
AAI Junior Assistant (Fire Service) Official Paper (Held On: 15 Nov, 2022 Shift 2)
View all AAI Junior Assistant Papers >
  1. 97
  2. 121
  3. 123
  4. 126

Answer (Detailed Solution Below)

Option 4 : 126
Free
ST 1: English
2.3 K Users
20 Questions 20 Marks 25 Mins

Detailed Solution

Download Solution PDF

दिया गया है:

r(x) = ax + b

p(x) = 4x⁴ + 2x³ - 2x² + x - 1

q(x) = x² + 2x - 3

p(x) + r(x), q(x) से विभाज्य है। 

प्रयुक्त सूत्र:

यदि कोई बहुपद f(x), g(x) से विभाज्य है, तो g(x) के मूल भी f(x) के मूल होते हैं।

गणना:

q(x) के मूल:

q(x) = x² + 2x - 3 = (x + 3)(x - 1)

q(x) के मूल x = -3 और x = 1 हैं।

अब,

p(x) + r(x) = 4x⁴ + 2x³ - 2x² + x - 1 + ax + b

⇒ 4x⁴ + 2x³ - 2x² + (a + 1)x + (b - 1)

चूँकि p(x) + r(x), q(x) से विभाज्य है, इसलिए q(x) के मूल भी p(x) + r(x) के मूल हैं।

x = 1 प्रतिस्थापित कीजिए:

4(1)⁴ + 2(1)³ - 2(1)² + (a + 1)(1) + (b - 1) = 0

4 + 2 - 2 + a + 1 + b - 1 = 0

4 + a + b = 0

a + b = -4 ...(1)

x = -3 प्रतिस्थापित कीजिए:

4(-3)⁴ + 2(-3)³ - 2(-3)² + (a + 1)(-3) + (b - 1) = 0

4(81) + 2(-27) - 2(9) - 3a - 3 + b - 1 = 0

324 - 54 - 18 - 3a - 4 + b = 0

248 - 3a + b = 0

-3a + b = -248 ...(2)

a और b के लिए समीकरण (1) और (2) को हल कीजिए:

(2) से (1) घटाइए:

(-3a + b) - (a + b) = -248 - (-4)

-4a = -244

a = 61

(1) में a = 61 प्रतिस्थापित कीजिए:

61 + b = -4

b = -65

अब,

a - b = 61 - (-65) = 61 + 65 = 126

इसलिए, (a - b) का मान 126 है।

Latest AAI Junior Assistant Updates

Last updated on Apr 24, 2025

-> The AAI Junior Assistant Response Sheet 2025 has been out on the official portal for the written examination.

-> AAI has released 168 vacancies for Western Region. Candidates had applied online from 25th February to 24th March 2025.

-> A total number of 152 Vacancies have been announced for the post of Junior Assistant (Fire Service) for Northern Region.

-> Eligible candidates can apply from 4th February 2025 to 5th March 2025. 

-> Candidates who have completed 10th with Diploma or 12th Standard are eligible for this post.

-> The selection process includes a Computer Based Test, Document Verification, Medical Examination (Physical Measurement Test), Driving Test and a Physical Endurance Test.

-> Prepare for the exam with AAI Junior Assistant Previous year papers.

More Polynomials Questions

More Algebra Questions

Get Free Access Now
Hot Links: teen patti jodi teen patti rules teen patti online game