Question
Download Solution PDFजब बहुपद r(x) = ax + b को बहुपद p(x) = 4x⁴ + 2x³ - 2x² + x - 1 में जोड़ा जाता है, तो परिणामी बहुपद बहुपद q(x) = x² + 2x - 3 से विभाज्य है। (a - b) का मान क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया गया है:
r(x) = ax + b
p(x) = 4x⁴ + 2x³ - 2x² + x - 1
q(x) = x² + 2x - 3
p(x) + r(x), q(x) से विभाज्य है।
प्रयुक्त सूत्र:
यदि कोई बहुपद f(x), g(x) से विभाज्य है, तो g(x) के मूल भी f(x) के मूल होते हैं।
गणना:
q(x) के मूल:
q(x) = x² + 2x - 3 = (x + 3)(x - 1)
q(x) के मूल x = -3 और x = 1 हैं।
अब,
p(x) + r(x) = 4x⁴ + 2x³ - 2x² + x - 1 + ax + b
⇒ 4x⁴ + 2x³ - 2x² + (a + 1)x + (b - 1)
चूँकि p(x) + r(x), q(x) से विभाज्य है, इसलिए q(x) के मूल भी p(x) + r(x) के मूल हैं।
x = 1 प्रतिस्थापित कीजिए:
4(1)⁴ + 2(1)³ - 2(1)² + (a + 1)(1) + (b - 1) = 0
4 + 2 - 2 + a + 1 + b - 1 = 0
4 + a + b = 0
a + b = -4 ...(1)
x = -3 प्रतिस्थापित कीजिए:
4(-3)⁴ + 2(-3)³ - 2(-3)² + (a + 1)(-3) + (b - 1) = 0
4(81) + 2(-27) - 2(9) - 3a - 3 + b - 1 = 0
324 - 54 - 18 - 3a - 4 + b = 0
248 - 3a + b = 0
-3a + b = -248 ...(2)
a और b के लिए समीकरण (1) और (2) को हल कीजिए:
(2) से (1) घटाइए:
(-3a + b) - (a + b) = -248 - (-4)
-4a = -244
a = 61
(1) में a = 61 प्रतिस्थापित कीजिए:
61 + b = -4
b = -65
अब,
a - b = 61 - (-65) = 61 + 65 = 126
इसलिए, (a - b) का मान 126 है।
Last updated on Apr 24, 2025
-> The AAI Junior Assistant Response Sheet 2025 has been out on the official portal for the written examination.
-> AAI has released 168 vacancies for Western Region. Candidates had applied online from 25th February to 24th March 2025.
-> A total number of 152 Vacancies have been announced for the post of Junior Assistant (Fire Service) for Northern Region.
-> Eligible candidates can apply from 4th February 2025 to 5th March 2025.
-> Candidates who have completed 10th with Diploma or 12th Standard are eligible for this post.
-> The selection process includes a Computer Based Test, Document Verification, Medical Examination (Physical Measurement Test), Driving Test and a Physical Endurance Test.
-> Prepare for the exam with AAI Junior Assistant Previous year papers.