Question
Download Solution PDF[π, 3π] पर फलन f (x) =
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
रोले की प्रमेय:
रोले की प्रमेय में कहा गया है कि यदि कोई फलन f बंद अंतराल [a, b] पर निरंतर है और खुले अंतराल (a, b) पर अवकलनीय है जैसे कि,
f(a) = f(b) तो, किसी c ∈ [a, b] के लिए
f′(c) = 0
गणना:
दिया गया फलन [π, 3π] पर f(x) =
f(π) =
चूँकि f(π) = f(3π), एक c ∈ [π, 3π] ऐसे मौजूद होने चाहिए जैसे कि f'(c) = 0।
f'(x) =
⇒ f'(c) =
⇒
⇒
⇒ c = 2nπ, जहाँ n एक पूर्णांक है।
हम c ∈ [π, 3π] चाहते हैं इसलिए c = 2π।
Last updated on Jun 17, 2025
-> The CUET 2025 provisional answer key has been made public on June 17, 2025 on the official website.
-> The CUET 2025 Postponed for 15 Exam Cities Centres.
-> The CUET 2025 Exam Date was between May 13 to June 3, 2025.
-> 12th passed students can appear for the CUET UG exam to get admission to UG courses at various colleges and universities.
-> Prepare Using the Latest CUET UG Mock Test Series.
-> Candidates can check the CUET Previous Year Papers, which helps to understand the difficulty level of the exam and experience the same.