Question
Download Solution PDFनिम्नलिखित समीकरण के सभी मूलों के वर्गों का योग ज्ञात कीजिए:
\((x + \frac{1}{x})^2 - 4 = \frac{3}{2}(x - \frac{1}{x}), x \neq 0\)
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया गया है:
समीकरण है (x + 1/x)2 - 4 = 3/2(x - 1/x), x ≠ 0
प्रयुक्त सूत्र:
(a + b)2 = a2 + b2 + 2ab
(a - b)2 = a2 + b2 - 2ab
हम जानते हैं कि (x + 1/x)2 = x2 + 1/x2 + 2
और (x - 1/x)2 = x2 + 1/x2 - 2
इसके अलावा, (x + 1/x)2 - (x - 1/x)2 = 4
गणना:
माना, y = x - 1/x.
तब (x + 1/x)2 = (x - 1/x)2 + 4 = y2 + 4.
इन्हें दिए गए समीकरण में प्रतिस्थापित करें:
(y2 + 4) - 4 = 3/2 y
⇒ y2 = 3/2 y
⇒ 2y2 = 3y
⇒ 2y2 - 3y = 0
⇒ y(2y - 3) = 0
यह y के लिए दो संभावित मान देता है:
1. y = 0
2. 2y - 3 = 0 ⇒ y = 3/2
स्थिति 1: x - 1/x = 0
⇒ (x2 - 1)/x = 0
⇒ x2 - 1 = 0
⇒ x2 = 1
⇒ x = ± 1
इसलिए, मूल 1 और -1 हैं।
स्थिति 2: x - 1/x = 3/2
⇒ (x2 - 1)/x = 3/2
⇒ 2(x2 - 1) = 3x
⇒ 2x2 - 2 = 3x
⇒ 2x2 - 3x - 2 = 0
⇒ 2x2 - 4x + x - 2 = 0
⇒ 2x(x - 2) + 1(x - 2) = 0
⇒ (2x + 1)(x - 2) = 0
⇒ x - 2 = 0 ⇒ x = 2
⇒ 2x + 1 = 0 ⇒ x = -1/2
समीकरण के मूल 1, -1, 2 और -1/2 हैं।
अब, सभी मूलों के वर्गों का योग ज्ञात कीजिए:
वर्गों का योग = (1)2 + (-1)2 + (2)2 + (-1/2)2
= 1 + 1 + 4 + 1/4
= 6 + 1/4
= (24 + 1)/4
= 25/4 = \(6\frac{1}{4}\)
इसलिए, सही उत्तर विकल्प 3 है।
Last updated on Jul 2, 2025
-> CBSE Superintendent 2025 Skill Test Hall Ticket has been released on the official website.
-> The CBSE Superintendent 2025 Skill Test Notice has been released which will be conducted on 5th July 2025.
-> The Tier-I Exam was conducted on 20th April 2025.
-> Eligible candidates had submitted their applications online between January 2nd and 31st, 2025.
-> The selection process includes written examination and document verification.
-> This position entails managing administrative and operational duties within the board, requiring excellent organizational skills to ensure the seamless execution of academic and administrative functions.