अंतराल [0,1] पर वक्र y = x3/2 की लंबाई क्या होगी?

This question was previously asked in
AAI ATC Junior Executive 2018 Official Paper (Shift 1)
View all AAI JE ATC Papers >
  1. \(\frac{1}{{27}}\left[ {{{\left( {13} \right)}^{3/2}} - 8} \right]\) इकाइयाँ
  2. \(\frac{1}{{16}}\left[ {{{\left( {11} \right)}^{3/2}} - 3} \right]\) इकाइयाँ
  3. \(\frac{57}{{5}}\) इकाइयाँ
  4. \(\frac{1}{{9}}\left[ {{{\left( {15} \right)}^{1/2}} - 4} \right]\) यूनिट्स

Answer (Detailed Solution Below)

Option 1 : \(\frac{1}{{27}}\left[ {{{\left( {13} \right)}^{3/2}} - 8} \right]\) इकाइयाँ
Free
AAI ATC JE Physics Mock Test
6.6 K Users
15 Questions 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

अंतराल (a, b) में वक्र y(x) की लंबाई (L) इसप्रकार दी गई है:

\(L = \mathop \smallint \limits_a^b \sqrt {\left[ {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} \right]dx } \) -----(1)

गणना:

दिया हुआ:

y(x) = x3/2

(a, b) = (0, 1)

\(\frac{{dy\left( x \right)}}{{dx}} = \frac{3}{2}\;{x^{\frac{1}{2}}}\)

समीकरण (1) से

\(I = \mathop \smallint \limits_a^b \sqrt {\left[ {1 + \;\left( {\frac{9}{4}x} \right)} \right]} dx\)

\( = \frac{1}{2}\mathop \smallint \limits_0^1 \sqrt {\left( {4 + 9x} \right).dx} \)

माना कि, u = 4 + 9x

\(\frac{{\partial u}}{{\partial x}} = 9 = \frac{1}{9}\smallint du = dx\)

\(L = \left( {\frac{1}{2}} \right)\left( {\frac{1}{9}} \right)\mathop \smallint \limits_4^{13} \left( {\sqrt u } \right).du\)

\(L = \;\left( {\frac{1}{2}} \right)\left( {\frac{1}{9}} \right)\left( {\frac{2}{3}} \right){\left[ {{4^{\frac{3}{2}}}} \right]_4}^{13}\)

\(L = \frac{1}{{27}}[\left( {13{)^{\frac{3}{2}}} - {{\left( 4 \right)}^{\frac{3}{2}}}} \right]\)

\(L = \frac{1}{{27}}\left( {{{\left( {13} \right)}^{\frac{3}{2}}} - 8} \right)\)

Latest AAI JE ATC Updates

Last updated on May 26, 2025

-> AAI ATC exam date 2025 will be notified soon. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on 4th April 2025, along with the details of application dates, eligibility, and selection process.

-> Total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

More Tangents and Normals Questions

More Circles Questions

Get Free Access Now
Hot Links: teen patti master golden india teen patti rich teen patti customer care number teen patti master official teen patti gold