Question
Download Solution PDFमाध्य मान प्रमेय के अनुसार \(f'(x) = \frac{f(b)-f(a)}{b-a}\) फिर
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
माध्य मान प्रमेय: माना कि f : [a, b] → R, [a, b] पर निरंतर और (a, b) पर अवकलनीय फलन है। तो यहाँ (a, b) में कुछ c मौजूद है जिससे
f'(c) = \(\rm\frac{[f (b) - f(a)] }{(b - a)}\) है।
वर्णन:
दिया गया है कि
\(f'(x) = \frac{f(b)-f(a)}{b-a}\)
माध्य मान प्रमेय के अनुसार f'(x) को कुछ मान a < xt < b के लिए परिभाषित किया जाएगा, जहां f(x) अवकलनीय है।
अत: सही उत्तर a < xt < b है।
Last updated on Jun 18, 2025
->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.