For the function \(\rm f(x)=\sin x+3x-\frac{2}{\pi}(x^2+x)\) where x ∈ \(\rm \left[0, \frac{\pi}{2}\right]\) consider the following two statements : 

(I) f is increasing in \(\rm \left(0,\frac{\pi}{2}\right)\)

(II) f' is decreasing in \(\rm \left(0,\frac{\pi}{2}\right)\)

Between the above two statements, 

  1. only (I) is true. 
  2. only (II) is true. 
  3. neither (I) nor (II) is true. 
  4. both (I) and (II) are true. 

Answer (Detailed Solution Below)

Option 1 : only (I) is true. 

Detailed Solution

Download Solution PDF

Calculation:

Given, \(f(x)=\sin x+3 x-\frac{2}{\pi}\left(x^2+x\right)\) \(x \in\left[0, \frac{\pi}{2}\right]\)

⇒ \(f^{\prime}(x)=\cos x+3-\frac{2}{\pi}(2 x+1)>0 \quad f(x) \uparrow\)

⇒ \(f^{\prime}(x)=-\sin x+0-\frac{\pi}{2}(2)\)

\(-\sin x-\frac{4}{\pi}<0\ {f}^{\prime}({x}) \downarrow\)

\(0<{x}<\frac{\pi}{2}\)

⇒ \(-\frac{2}{\pi}(\underset{+1}{0}<\underset{+1}{2 x}<\underset{+1}{\pi})\) 

qImage669e209bd9d2078827f1a0ec

∴ f is increasing in \(\rm \left(0,\frac{\pi}{2}\right)\).

The correct answer is Option 1.

Get Free Access Now
Hot Links: teen patti master apk download teen patti boss teen patti download