Increasing and Decreasing Functions MCQ Quiz - Objective Question with Answer for Increasing and Decreasing Functions - Download Free PDF

Last updated on May 13, 2025

Latest Increasing and Decreasing Functions MCQ Objective Questions

Increasing and Decreasing Functions Question 1:

For which interval the given function f(x) = -2x- 9x2 - 12x + 1 is decreasing 

  1. (-2, ∞) 
  2. (-2, -1)
  3. (-∞, -1)
  4. (-∞, -2) ∪ (-1, ∞)
  5. None of the above

Answer (Detailed Solution Below)

Option 4 : (-∞, -2) ∪ (-1, ∞)

Increasing and Decreasing Functions Question 1 Detailed Solution

Concept:

The function f(x) is decreasing when f '(x) < 0

Calculation:

Given, f(x) = -2x3 - 9x2 - 12x + 1

⇒ f '(x) = -6x2 - 18x - 12

⇒ f '(x) = -6(x2 + 3x + 2)

⇒ f '(x) = -6(x + 1)(x + 2)

⇒ f '(x) < 0 when -6(x + 1)(x + 2) < 0

⇒ f '(x) < 0 when (x + 1)(x + 2) > 0

⇒ f(x) is decreasing for (-∞, -2) ∪ (-1, ∞)

∴ The correct answer is option (4).

Increasing and Decreasing Functions Question 2:

The interval in which y = x2e-x is increasing is ________.

  1. (0, 2)
  2. (-2, 0)
  3. (2, ∞)
  4. (-∞, ∞)
  5. (-2, 5)

Answer (Detailed Solution Below)

Option 1 : (0, 2)

Increasing and Decreasing Functions Question 2 Detailed Solution

Concept Used:

A function is increasing when its derivative is greater than 0.

Calculation:

y = x2e-x

\(\frac{dy}{dx} = 2xe^{-x} + x^2(-e^{-x}) = e^{-x}(2x - x^2)\)

For the function to be increasing, \(\frac{dy}{dx} > 0\)

\(e^{-x}(2x - x^2) > 0\)

Since \(e^{-x}\) is always positive, we need to find where \(2x - x^2 > 0\)

⇒ \(x(2-x) > 0\)

⇒ 0 < x < 2.

The function is increasing in the interval (0, 2).

Hence option 1 is correct

Increasing and Decreasing Functions Question 3:

The function \(f(x)=\tan ^{-1}(\sin x+\cos x)\) is an increasing function in

  1. \(\left(\frac{\pi}{4}, \frac{\pi}{2}\right)\)
  2. \(\left(0, \frac{\pi}{2}\right)\)
  3. \(\left(-\frac{\pi}{2}, \frac{\pi}{4}\right)\)
  4. \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)
  5. \(\left(0, \frac{\pi}{2}\right]\)

Answer (Detailed Solution Below)

Option 3 : \(\left(-\frac{\pi}{2}, \frac{\pi}{4}\right)\)

Increasing and Decreasing Functions Question 3 Detailed Solution

Concept Used:

A function is increasing if its derivative is positive.

Calculation

Let f(x) = tan-1(sin x + cos x)

\(f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \cdot (\cos x - \sin x)\)

Simplify the denominator:

1 + (sin x + cos x)2 = 1 + sin2 x + cos2 x + 2 sin x cos x

= 1 + 1 + 2 sin x cos x

= 2 + 2 sin x cos x

= 2(1 + sin x cos x)

So, f'(x) = \(\frac{\cos x - \sin x}{2(1 + \sin x \cos x)}\) = \(\frac{\sqrt{2} \cos(x + \frac{\pi}{4})}{1 + (\sin x + \cos x)^2}\)

For f(x) to be increasing, f'(x) > 0

f(x) is increasing if \(-\frac{\pi}{2} < x + \frac{\pi}{4} < \frac{\pi}{2} \Rightarrow -\frac{3\pi}{4} < x < \frac{\pi}{4}\)

∴ The function f(x) = tan-1(sin x + cos x) is an increasing function in (-π/2, π/4).

 

Hence option 3 is correct

Increasing and Decreasing Functions Question 4:

The interval, in which the function \(f(x)=\frac{3}{x}+\frac{x}{3}\) is strictly decreasing, is:

  1. (-∞, -3) ∪ (3, ∞)
  2. (-3, 3)
  3. (-3, 0) ∪ (0, 3)
  4. \(\mathbb{R}-\{0\}\)

Answer (Detailed Solution Below)

Option 3 : (-3, 0) ∪ (0, 3)

Increasing and Decreasing Functions Question 4 Detailed Solution

Concept:

Monotonicity of Function:

  • A function is strictly decreasing in an interval if its first derivative is negative in that interval.
  • The function given is f(x) = |3/x + x/3|.
  • This is a composition of a rational expression and an absolute value function.
  • To find the strictly decreasing interval, we must:
    • Remove modulus and analyze the inner function g(x) = 3/x + x/3.
    • Compute the derivative of g(x) and study the sign of g′(x).
    • Consider the effect of modulus: if g(x) is negative, then f(x) = –g(x).
    • We then compute derivative of f(x) accordingly based on sign of g(x).

Rules used:

  • Derivative of 1/x = –1/x2
  • Derivative of x = 1

 

Calculation:

Let f(x) = |g(x)| where g(x) = 3/x + x/3

⇒ g′(x) = –3/x2 + 1/3

Set g′(x) = 0 to find turning points:

⇒ –3/x2 + 1/3 = 0

⇒ 1/3 = 3/x2

⇒ x2 = 9

⇒ x = ±3

Check sign of g′(x) around x = –3, 0, 3:

⇒ x < –3: x = –4 ⇒ g′(x) = –3/16 + 1/3 > 0

⇒ –3 < x < 0: x = –2 ⇒ g′(x) = –3/4 + 1/3 = –5/12 < 0

⇒ 0 < x < 3: x = 2 ⇒ g′(x) = –3/4 + 1/3 = –5/12 < 0

⇒ x > 3: x = 4 ⇒ g′(x) = –3/16 + 1/3 > 0

So, g(x) is decreasing in (–3, 0) ∪ (0, 3)

Now analyze sign of g(x) in (–3, 0) and (0, 3):

In both intervals, g(x) < 0

⇒ f(x) = –g(x)

⇒ f′(x) = –g′(x) = 3/x2 – 1/3

Set f′(x) < 0 for decreasing:

⇒ 3/x2 – 1/3 < 0

⇒ 3/x2 < 1/3 ⇒ x2 > 9 ⇒ |x| > 3

But this contradicts x ∈ (–3, 0) ∪ (0, 3)

Now test again the derivative for f(x) = –g(x) in (–3, 0) ∪ (0, 3)

In this interval, 3/x2 – 1/3 is decreasing when x2 < 9

So f′(x) < 0 when x2 < 9

⇒ x ∈ (–3, 0) ∪ (0, 3)

∴ The function is strictly decreasing in the interval (–3, 0) ∪ (0, 3)

Increasing and Decreasing Functions Question 5:

Which of the following function is decreasing on \(\left(0, \frac{\pi}{8}\right)\) ?

  1. sin x
  2. -cos x
  3. cos 6x
  4. tan 4x
  5. cos 4x

Answer (Detailed Solution Below)

Option 5 : cos 4x

Increasing and Decreasing Functions Question 5 Detailed Solution

Calculation

\(\sin x\)

\(\frac{d}{dx}\) \(\sin x\) = \(\cos x\).

On the interval \((0, \frac{\pi}{8})\), \(\cos x\) is positive.

Since the derivative is positive, \(\sin x\) is increasing on this interval.

\(-\cos x\)

\(\frac{d}{dx}\) \(-\cos x\) = \(\sin x\).

On the interval \((0, \frac{\pi}{8})\), \(\sin x\) is positive.

Since the derivative is positive, \(-\cos x\) is increasing on this interval.

\(\cos 4x\)

\(\frac{d}{dx}\) \(\cos 4x\) = \(-4\sin 4x\).

 \(4x\) lies in the interval \((0, \frac{\pi}{2})\), where \(\sin 4x\) is positive.

Therefore, \(-4\sin 4x\) is negative on this interval.

Since the derivative is negative, \(\cos 4x\) is decreasing on this interval.

Hence option 5 is correct.

Top Increasing and Decreasing Functions MCQ Objective Questions

Find the interval in which the function f(x) = x- 2x is strictly increasing ?

  1. [1, ∞)
  2. (1, ∞)
  3. (0, ∞)
  4. (-∞ , 1)

Answer (Detailed Solution Below)

Option 2 : (1, ∞)

Increasing and Decreasing Functions Question 6 Detailed Solution

Download Solution PDF

Concept:  

If f′(x) >  0 at each point in an interval, then the function is said to be strictly increasing.

Calculations:

Given , f(x) = x2 - 2x 

Differentiating, we get

f'(x) = 2x - 2

f(x) is strictly increasing function

∴ f'(x) > 0

⇒ 2x - 2 > 0

⇒ x > 1

∴ x ∈ (1, ∞)

The function f(x) = 1 - x - x3  is decreasing for

  1. x ≥ \(\frac {-1} 3\)
  2. x < \(\frac {-1} 3\)
  3. x > 1
  4. All values of x

Answer (Detailed Solution Below)

Option 4 : All values of x

Increasing and Decreasing Functions Question 7 Detailed Solution

Download Solution PDF

Concept:

  • If f′(x) > 0 then the function is said to be strictly increasing.
  • If f′(x) < 0 then the function is said to be decreasing.

 

Calculation:

Given: f(x) = 1 - x - x3

Differentiating with respect to x, we get

⇒ f'(x) = 0 - 1 - 3x2

⇒ f'(x) =  - 1 - 3x2

For decreasing function, f'(x) < 0

⇒ -1 - 3x2 < 0

⇒ -(1 + 3x2) < 0

As we know, Multiplying/Dividing each side of an inequality by a negative number reverses the direction of the inequality symbol.

⇒ (1 + 3x2)  > 0

As we know, x2 ≥ 0,  x ∈ R

So, 1 + 3x2 > 0, x ∈ R

Hence, the function is decreasing for all values of x

The function f(x) = 1 + x2 + x4  is strictly increasing for

  1. x < 0
  2. x ≥ 0
  3. x > 0
  4. None of these

Answer (Detailed Solution Below)

Option 3 : x > 0

Increasing and Decreasing Functions Question 8 Detailed Solution

Download Solution PDF

Concept:

  • If f′(x) > 0 then the function is said to be strictly increasing.
  • If f′(x) < 0 then the function is said to be decreasing.

 

Calculation:

Given: f(x) = 1 + x2 + x4

Differentiating with respect to x, we get

⇒ f'(x) = 0 + 2x + 4x3

⇒ f'(x) = 2x + 4x3

For strictly increasing function, f'(x) > 0

⇒ 2x + 4x3 > 0

⇒ 2x(1 + 2x2) > 0

As we know, x2 ≥ 0,  x ∈ R

So, 1 + 2x2 > 0, x ∈ R

Now, 2x > 0

⇒ x > 0

Hence function is strictly increasing for x > 0

Find the interval in which the function f(x) = 2x2 - 3x is strictly increasing ?

  1. (\(\rm\frac{3}{4}\), ∞)
  2. [\(\rm\frac{-3}{4}\), ∞)
  3. (-∞ ,\(\rm\frac{3}{4}\)]
  4. [\(\rm\frac{3}{4}\), 1)
    duplicate options found. English Question 1 options 1,2

Answer (Detailed Solution Below)

Option 1 : (\(\rm\frac{3}{4}\), ∞)

Increasing and Decreasing Functions Question 9 Detailed Solution

Download Solution PDF

Concept:  

If f′(x) >  0 at each point in an interval, then the function is said to be strictly increasing.

Calculations:

Given , f(x) = 2x2 - 3x 

Differentiating, we get

f'(x) = 4x - 3

f(x) is strictly increasing function

∴ f'(x) > 0

⇒ 4x - 3 > 0

⇒ 4x > 3 

⇒ x > \(\rm\frac{3}{4}\)

∴ x ∈ (\(\rm\frac{3}{4}\), ∞)

Important Points

Value of x

Intervals

Sign of f’(x) = 4x - 3

Nature of function f

x < \(\frac{3}{4}\)

(-∞, \(\frac{3}{4}\))

(-)  < 0

f is strictly decreasing

x > \(\frac{3}{4}\)

(\(\frac{3}{4}\), ∞)

(+)  < 0

f is strictly increasing

The function f(x) = 2 - x3 - x5  is decreasing for

  1. 1 ≤ x ≤ 5
  2. x ≥ 1
  3. x ≤ 1
  4. All values of x

Answer (Detailed Solution Below)

Option 4 : All values of x

Increasing and Decreasing Functions Question 10 Detailed Solution

Download Solution PDF

Concept:

  • If f′(x) > 0 then the function is said to be strictly increasing.
  • If f′(x) < 0 then the function is said to be decreasing.

 

Calculation:

Given: f(x) = 2 - x3 - x5

Differentiating with respect to x, we get

⇒ f'(x) = 0 - 3x2 - 5x4

⇒ f'(x) =  - 3x2 - 5x4

For decreasing function, f'(x) < 0

⇒- 3x2 - 5x4 < 0

⇒ -[x2(3 + 5x2)] < 0

As we know, Multiplying/Dividing each side of an inequality by a negative number reverses the direction of the inequality symbol.

⇒ x2(3 + 5x2) > 0

As we know, x2 ≥ 0,  x ∈ R

So, 3 + 5x2 > 0, x ∈ R

Hence function is decreasing for all values of x

Find the interval in which the function f(x) = x2 - 4x is strictly increasing ?

  1. [2, ∞)
  2. (2, ∞)
  3. (0, ∞)
  4. (-∞ , 2)

Answer (Detailed Solution Below)

Option 2 : (2, ∞)

Increasing and Decreasing Functions Question 11 Detailed Solution

Download Solution PDF

Concept:  

If f′(x) >  0 at each point in an interval, then the function is said to be strictly increasing.

Calculations:

Given , f(x) = x2 - 4x 

Differentiating, we get

f'(x) = 2x - 4

f(x) is strictly increasing function

∴ f'(x) > 0

⇒ 2x - 4 > 0

⇒ x > 2

∴ x ∈ (2, ∞)

Mistake Points

If a, b ∈ R and a < b, the following is a representation of the open and closed intervals:

  • Open interval is indicated by (a, b) = {x : a < y < b}, i.e. 'a' and 'b' are not included.
  • Closed interval is indicated by [a, b] = {x : a ≤ x ≤ b}, i.e. 'a' and 'b' are included.
  • [a, b) = {x : a ≤ x < b} is an open interval from a to b, inclusive of 'a' but excluding 'b'.
  • (a, b ] = { x : a < x ≤ b } is an open interval from a to b including 'b' but excluding 'a'.

 

Since '2' is not included here, Option (1) will not be correct.

Find the value of x for which f(x) = x - ex is an increasing function

  1. (0, ∞)
  2. [0, ∞)
  3. (-∞, 0)
  4. None of the above 

Answer (Detailed Solution Below)

Option 3 : (-∞, 0)

Increasing and Decreasing Functions Question 12 Detailed Solution

Download Solution PDF

Concept:

  • If f′(x) > 0 then the function is said to be increasing.
  • If f′(x) < 0 then the function is said to be decreasing.

Calculation:

Given:

f(x) = x - ex

Differentiating with respect to x, we get

⇒ f’(x) = 1 - ex

For increasing function,

f'(x) > 0

⇒ 1 – ex > 0

⇒ ex < 1

⇒ ex < e0

∴ x < 0

So, x ∈ (-∞, 0) 

Let \({\rm{f}}\left( {\rm{x}} \right) = {\rm{x}} + \frac{1}{{\rm{x}}}\), where x ∈ (0, 1). Then which one of the following is correct?

  1. f(x) fluctuates in the interval
  2. f(x) increases in the interval
  3. f(x) decreases in the interval
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : f(x) decreases in the interval

Increasing and Decreasing Functions Question 13 Detailed Solution

Download Solution PDF

Concept:

Monotonic function: If a function is differentiable on the interval (a, b) and if the function is increasing/strictly increasing or decreasing/strictly decreasing, then the function is known as monotonic function.

First derivative test:

  • If \(\frac{{{\rm{df}}\left( {\rm{x}} \right)}}{{{\rm{dx}}}} \ge 0\) for all x in (a, b) then, f(x) is an increasing function in (a, b).
  • If \(\frac{{{\rm{df}}\left( {\rm{x}} \right)}}{{{\rm{dx}}}} \le 0\) for all x in (a, b) then, f(x) is an decreasing function in (a, b).


For strictly increasing or decreasing:

  • \(\frac{{{\rm{df}}\left( {\rm{x}} \right)}}{{{\rm{dx}}}} > 0\) for strictly increasing.
  • \(\frac{{{\rm{df}}\left( {\rm{x}} \right)}}{{{\rm{dx}}}} < 0\) for strictly decreasing.


Calculation:

Given: \({\rm{f}}\left( {\rm{x}} \right) = {\rm{x}} + \frac{1}{{\rm{x}}}\)

Differentiating w.r.t x

\(\Rightarrow {\rm{f'}}\left( {\rm{x}} \right) = 1 - \frac{1}{{{{\rm{x}}^2}}}\)

\(\Rightarrow {\rm{f'}}\left( {\rm{x}} \right) =\rm \frac{x^2 -1}{x^2}= \rm \frac{(x -1)(x+1)}{x^2}\)

So, for x ∈ (0, 1), f’(x) < 0.

Hence, f(x) is decreases for x ∈ (0, 1).

Consider the following statements in respect of the function f(x) = sin x:

1. f(x) increases in the interval (0, π).

2. f(x) decreases in the interval \(\left(\dfrac{5\pi}{2},3\pi\right).\)

Which of the above statements is/are correct?

  1. 1 only
  2. 2 only
  3. Both 1 and 2
  4. Neither 1 nor 2

Answer (Detailed Solution Below)

Option 2 : 2 only

Increasing and Decreasing Functions Question 14 Detailed Solution

Download Solution PDF

Concept:

The function f(x):

  • Increases for the values x of having f'(x) > 0
  • Decreases for the values of x having f'(x) < 0

 

Calculation:

Given function is f(x) = sin x

∴ f'(x) = cos x

For x ∈ (0, \(π\over2\)), cos x > 0 and for x ∈ (\(π\over2\), π), cos x < 0

∴ For x ∈ (0, π), f(x) increases to max at \(π\over2\) and then decreases to min at π.

For x ∈ \(\left(\dfrac{5\pi}{2},3\pi\right)\), cos x < 0

∴ f(x) decreases for x ∈ \(\left(\dfrac{5\pi}{2},3\pi\right)\)

statement 2 is correct Only.

Find the interval in which the function f(x) = 2x3 - 24x + 5 is strictly increasing ?

  1. (- ∞, - 2) ∪ (2, ∞)
  2. (- ∞, - 2] ∪ (2, ∞)
  3. (- ∞, - 2] ∪ [2, ∞)
  4. (- ∞, - 2) ∪ [2, ∞)

Answer (Detailed Solution Below)

Option 1 : (- ∞, - 2) ∪ (2, ∞)

Increasing and Decreasing Functions Question 15 Detailed Solution

Download Solution PDF

Concept:

Let f(x) be a function defined on an interval (a, b), this function is said to be an strictly increasing function:

  • If x1 < x2 then f(x1) < f(x2) ∀ x1, x2 ∈ (a, b)
  • Here, \(\frac{{dy}}{{dx}} > 0\;or\;f'\left( x \right) > 0\)

Similarly, f(x) is said to be a decreasing function:

  • If If x1 < x2 then f(x1) > f(x2) ∀ x1, x2 ∈ (a, b).
  • Here, \(\frac{{dy}}{{dx}} < 0\;or\;f'\left( x \right) < 0\)

Calculation:

Given: f(x) = 2x3 - 24x + 5

Here we have to find the interval in which f(x) is strictly increasing.

Let's first calculate f'(x)

⇒ f'(x) = 6x2 - 24

As we know that, for a strictly increasing function say f(x) we have f'(x) > 0

⇒ 6x2 - 24 > 0

⇒ x2 > 4

⇒ x ∈ (- ∞, - 2) ∪ (2, ∞)

Hence, the interval in which the function is increasing is (- ∞, - 2) ∪ (2, ∞)

Get Free Access Now
Hot Links: teen patti gold apk teen patti master official teen patti master purana teen patti master teen patti master downloadable content