Consider the following statements :

1. Dot product over vector addition is distributive

2. Cross product over vector addition is distributive

3. Cross product of vectors is associative

Which of the above statements is/are correct ?

This question was previously asked in
NDA 01/2022: Maths Previous Year paper (Held On 10 April 2022)
View all NDA Papers >
  1. 1 only
  2. 2 only
  3. 1 and 2 only
  4. 1, 2 and 3

Answer (Detailed Solution Below)

Option 3 : 1 and 2 only
Free
NDA 01/2025: English Subject Test
5.3 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

Concept:

One algebraic property of real numbers is the distributive law. The distributive law for the real numbers says: "For all real numbers x, y, and z, \(x.( y+ z)=x. y+ x.z\)

The vector dot product is distributive over addition. In general: \(\vec a.( \vec b+ \vec c)=\vec a. \vec b+ \vec a.\vec c\)  

The vector cross product is distributive over addition. In general: \(\vec a × (\vec b + \vec c) = \vec a × \vec b + \vec a × \vec c\)

Associative property: (p × q) × r = p × (q × r) (where p, q, and r are any three natural/whole numbers)

Calculation:

Let

\(\displaystyle \vec a = a_x \overline i+a_y \overline j+a_z \overline k\\\vec b = b_x \overline i+b_y \overline j+b_z \overline k\\\vec c = c_x \overline i+c_y \overline j+c_z \overline k\)

Statement I: Dot product over vector addition is distributive

We have to prove \(\vec a.( \vec b+ \vec c)=\vec a. \vec b+ \vec a.\vec c\)

  • \(\displaystyle \vec a.( \vec b+ \vec c)=(a_x ̂ i+a_y ̂ j+a_z ̂ k).[(b_x ̂ i+b_y ̂ j+b_z ̂ k)+(c_x ̂ i+c_y ̂ j+c_z ̂ k)] \)
  • \(\displaystyle \vec a.( \vec b+ \vec c)=(a_x ̂ i+a_y ̂ j+a_z ̂ k).[(b_x+c_x)̂ i+(b_y+c_y)̂ j+(b_z +c_z )̂ k] \)
  • \(\vec a.( \vec b+ \vec c)=\) a(b+ cx) + a(by + cy) + a(b+ cz)
  • \(\vec a.( \vec b+ \vec c)=\) ab+ ax cx + aby + acy + ab+ acz................................... (1)
  • \(\displaystyle \vec a. \vec b+ \vec a.\vec c=(a_x ̂ i+a_y ̂ j+a_z ̂ k).(b_x ̂ i+b_y ̂ j+b_z ̂ k)+(a_x ̂ i+a_y ̂ j+a_z ̂ k).(c_x ̂ i+c_y ̂ j+c_z ̂ k)\)
  • \(\displaystyle \vec a. \vec b+ \vec a.\vec c=(a_x.b_x+a_y.b_y +a_z.b_z)+(a_x.c_x +a_y.c_y+a_z.c_z)\)
  • \(\vec a. \vec b+ \vec a.\vec c=\) ab+ ax cx + aby + acy + ab+ acz................................... (2) 
  • From equation (1) and (2)
  • ∴ \(\vec a.( \vec b+ \vec c)=\vec a. \vec b+ \vec a.\vec c\)  

Statement II: Cross product over vector addition is distributive

We have to prove \(\vec a × (\vec b + \vec c) = \vec a × \vec b + \vec a × \vec c\)

  • \(\displaystyle \vec a\times(\vec b+ \vec c)=(a_x ̂ i+a_y ̂ j+a_z ̂ k)\times[(b_x ̂ i+b_y ̂ j+b_z ̂ k)+(c_x ̂ i+c_y ̂ j+c_z ̂ k)] \)
  • \(\displaystyle \vec a\times( \vec b+ \vec c)=(a_x ̂ i+a_y ̂ j+a_z ̂ k)\times[(b_x+c_x)̂ i+(b_y+c_y)̂ j+(b_z +c_z )̂ k] \)
  • \(\vec a\times( \vec b+ \vec c)=\begin{bmatrix} \overline i & \overline j & \overline k \\[0.3em] a_x & a_y & a_z \\[0.3em] b_x+c_x &b_y+c_y & b_z+c_z \end{bmatrix}\)
  • \(\vec a\times( \vec b+ \vec c)=\) ̂̂î [a(b+ cz) - a(b+ cy)] - ĵ [a(bz + cz) - a(bx + cx)] + k̂ [a(b+ cy) - a(bx + cx)] ............(3) 
  • \(\displaystyle \vec a\times \vec b+ \vec a\times\vec c=(a_x ̂ i+a_y ̂ j+a_z ̂ k)\times(b_x ̂ i+b_y ̂ j+b_z ̂ k)+(a_x ̂ i+a_y ̂ j+a_z ̂ k)\times(c_x ̂ i+c_y ̂ j+c_z ̂ k)\)
  • \(\displaystyle \vec a\times \vec b+ \vec a\times\vec c=\begin{bmatrix} ̂ i & ̂ j & ̂ k \\[0.3em] a_x & a_y & a_z \\[0.3em] b_x &b_y& b_z \end{bmatrix}+\begin{bmatrix} ̂ i & ̂ j & ̂ k \\[0.3em] a_x & a_y & a_z \\[0.3em] c_x &c_y& c_z \end{bmatrix}\)
  • \((\vec a\times \vec b+\vec a\times \vec c)=\) ̂̂î [aybz - azby)] - ĵ (axbz - azbx)] + k̂ [aby - aybx] + î [ayc- azcy)] - ĵ (axcz - azcx)] + k̂ [acy - aycx]
  • \((\vec a\times \vec b+\vec a\times \vec c)=\) î [a(b+ cz) - a(b+ cy)] - ĵ [a(bz + cz) - a(bx + cx)] + k̂ [a(b+ cy) - a(bx + cx)] ..............(4) 
  • ∴ \(\vec a × (\vec b + \vec c) = \vec a × \vec b + \vec a × \vec c\)

Statement III: Cross product of vectors is associative

  • Consider two non-zero perpendicular vectors, a and b.
  • We have (a × a) × b = 0 × b = 0
  • However, a × b is perpendicular to a and is not the zero vector, so
  • a × (a × b) ≠ 0
  • (a × a) × b ≠ a × (a × b)
  • Cross product of vectors is not associative

∴ Only Statements I and II are correct.

Latest NDA Updates

Last updated on May 30, 2025

->UPSC has released UPSC NDA 2 Notification on 28th May 2025 announcing the NDA 2 vacancies.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced for cycle 2. The written examination will be held on 14th September 2025.

-> Earlier, the UPSC NDA 1 Exam Result has been released on the official website.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Properties of Vectors Questions

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti club apk teen patti go teen patti cash game teen patti mastar teen patti real