অন্তরকলজ সমীকরণ \(\rm 2y\frac{dx}{dy}+ x = 5y^{2}\) এর সমাকল উৎপাদকটি কত? (y≠ 0)

  1. \(\rm \sqrt{y}\)
  2. y2
  3. y
  4. \(\rm \frac{1}{\sqrt{y}}\)

Answer (Detailed Solution Below)

Option 1 : \(\rm \sqrt{y}\)
Free
BSF HC RO/RM All India Mega Live Test
5.4 K Users
100 Questions 200 Marks 120 Mins

Detailed Solution

Download Solution PDF

ধারণা:

সমাকল উৎপাদক, (IF) একটি অন্তরকলজ সমীকরণ \(\rm 2y\frac{dx}{dy}+ x = 5y^{2}\) এর জন্য, যেখানে P এবং Q-কে y-এর অবিচ্ছিন্ন ফলাফল হিসাবে দেওয়া হয়েছে।

IF = \(\rm e^{\int Pdy}\) 

গণনা:

প্রদত্ত সমীকরণটিকে এইভাবে সরলীকৃত করা যেতে পারে,

\(\rm \frac{\mathrm{d} x}{\mathrm{d} y}+ \frac{x}{2y} = \frac{5}{2}y\)

আদর্শ সমীকরণ \(\rm\frac{dx}{dy}+Px= Q\) এর সাথে সমীকরণ ( i ) এর তুলনা করলে , আমরা পাই,

P = \(\rm \frac{1}{2y}\) and Q = \(\rm \frac{5}{2}y\)

 ∴ IF = \(\rm e^{\int Pdy}\) = \(\rm e^{\int \frac{1}{2y}dy}\) 

⇒ IF = \(\rm e^{\frac{1}{2}\log y}\) = \(\rm e^{\log y^{\frac{1}{2}}}\)  

⇒ IF = \(\rm \sqrt{y}\) .  ( ∵ \(\rm e^{a \log x}= x^{a}\) ) 

সঠিক বিকল্প হল 1

Latest NDA Updates

Last updated on May 30, 2025

->UPSC has released UPSC NDA 2 Notification on 28th May 2025 announcing the NDA 2 vacancies.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced for cycle 2. The written examination will be held on 14th September 2025.

-> Earlier, the UPSC NDA 1 Exam Result has been released on the official website.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

Get Free Access Now
Hot Links: teen patti real cash teen patti download apk teen patti baaz teen patti master download teen patti gold apk download