Logarithmic Function MCQ Quiz in தமிழ் - Objective Question with Answer for Logarithmic Function - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Mar 16, 2025

பெறு Logarithmic Function பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Logarithmic Function MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Logarithmic Function MCQ Objective Questions

Top Logarithmic Function MCQ Objective Questions

Logarithmic Function Question 1:

If \(\log _{ 10 }{ \left( \cfrac { { x }^{ 2 }-{ y }^{ 2 } }{ { x }^{ 2 }+{ y }^{ 2 } } \right) } =2\), then \(\cfrac { dy }{ dx } =\)............

  1. \(-\cfrac { 99x }{ 101y }\)
  2. \(\cfrac { 99x }{ 101y }\)
  3. \(-\cfrac { 99y }{ 101x }\)
  4. \(\cfrac { 99y }{ 101x }\)

Answer (Detailed Solution Below)

Option 1 : \(-\cfrac { 99x }{ 101y }\)

Logarithmic Function Question 1 Detailed Solution

\(\log _{ 10 }{ \left( \cfrac { { x }^{ 2 }-{ y }^{ 2 } }{ { x }^{ 2 }+{ y }^{ 2 } } \right) } =2\) \(\Rightarrow \dfrac { { x }^{ 2 }-{ y }^{ 2 } }{ { x }^{ 2 }+{ y }^{ 2 } } ={ 10 }^{ 2 }\) \(\Rightarrow 99{ x }^{ 2 }=-101{ y }^{ 2 }\)

Differentiating both the sides 

\(\Rightarrow \dfrac { dy }{ dx } =-\dfrac { 99x }{ 101y }\)

Logarithmic Function Question 2:

If y = logn x, where logn means loge loge... (repeated n times), then

x log x log2 x log3 x ..... logn-1 x logn x \(\frac{dy}{dx}\) is equal to

  1. log x
  2. x
  3. 1
  4. logn x

Answer (Detailed Solution Below)

Option 4 : logn x

Logarithmic Function Question 2 Detailed Solution

Calculation

y = logn x

\(\frac{dy}{dx} = \frac{1 }{(x log^{n-1} x log^{n-2 }x ... log x)}\)

x log x log2 x log3 x ..... logn-1 x logn x \(\frac{dy}{dx}\) = logn x

Hence option 4 is correct 

Logarithmic Function Question 3:

If y is a function of x and log(x + y) = 2xy, then the value of y'(0) is

  1. 1
  2. -1
  3. 2
  4. 0

Answer (Detailed Solution Below)

Option 1 : 1

Logarithmic Function Question 3 Detailed Solution

Answer : 1

Solution :

log(x + y) = 2xy

Differentiating w.r.t. x, we get

\(\frac{1}{x+y}\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y\)

\(\frac{1}{x+y}\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y\)

\(\left(\frac{1}{x+y}-2 x\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=2 y-\frac{1}{x+y}\)

\(\frac{\mathrm{d} y}{\mathrm{~d} x}\left(\frac{1}{x+y}-2 x\right)=2 y-\frac{1}{x+y}\)

\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(2 y-\frac{1}{x+y}\right)}{\left(\frac{1}{x+y}-2 x\right)}\)

For x = 0, log(y) = 0

⇒ y = 1

\(\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{(0,1)}=\frac{\left(2-\frac{1}{0+1}\right)}{\left(\frac{1}{0+1}-0\right)}=1\)

Logarithmic Function Question 4:

If log 2 = 0.2614, log 3 = 0.3521, log 6 = ?

  1. 0.0920
  2. 0.6135
  3. 1.2614
  4. 1.3521

Answer (Detailed Solution Below)

Option 2 : 0.6135

Logarithmic Function Question 4 Detailed Solution

Given the values:

log 2 = 0.2614

log 3 = 0.3521

Formula Used:

Using the logarithm property:

 

Calculation:

We can write as 6 = 2 x 3

Using the property:

log 6 = log 2 + log 3

Substituting the given values:

⇒ log 6 = 0.6135

Hence the value log 6 is 0.6135.

Therefore, the correct option is (2)

Get Free Access Now
Hot Links: teen patti star login teen patti gold apk teen patti joy apk