Logarithmic Function MCQ Quiz in मल्याळम - Objective Question with Answer for Logarithmic Function - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 13, 2025
Latest Logarithmic Function MCQ Objective Questions
Top Logarithmic Function MCQ Objective Questions
Logarithmic Function Question 1:
If \(\log _{ 10 }{ \left( \cfrac { { x }^{ 2 }-{ y }^{ 2 } }{ { x }^{ 2 }+{ y }^{ 2 } } \right) } =2\), then \(\cfrac { dy }{ dx } =\)............
Answer (Detailed Solution Below)
Logarithmic Function Question 1 Detailed Solution
Differentiating both the sides
\(\Rightarrow \dfrac { dy }{ dx } =-\dfrac { 99x }{ 101y }\)
Logarithmic Function Question 2:
If y = logn x, where logn means loge loge... (repeated n times), then
x log x log2 x log3 x ..... logn-1 x logn x \(\frac{dy}{dx}\) is equal to
Answer (Detailed Solution Below)
Logarithmic Function Question 2 Detailed Solution
Calculation
y = logn x
\(\frac{dy}{dx} = \frac{1 }{(x log^{n-1} x log^{n-2 }x ... log x)}\)
x log x log2 x log3 x ..... logn-1 x logn x \(\frac{dy}{dx}\) = logn x
Hence option 4 is correct
Logarithmic Function Question 3:
If y is a function of x and log(x + y) = 2xy, then the value of y'(0) is
Answer (Detailed Solution Below)
Logarithmic Function Question 3 Detailed Solution
Answer : 1
Solution :
log(x + y) = 2xy
Differentiating w.r.t. x, we get
\(\frac{1}{x+y}\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y\)
\(\frac{1}{x+y}\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y\)
\(\left(\frac{1}{x+y}-2 x\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=2 y-\frac{1}{x+y}\)
\(\frac{\mathrm{d} y}{\mathrm{~d} x}\left(\frac{1}{x+y}-2 x\right)=2 y-\frac{1}{x+y}\)
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(2 y-\frac{1}{x+y}\right)}{\left(\frac{1}{x+y}-2 x\right)}\)
For x = 0, log(y) = 0
⇒ y = 1
\(\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{(0,1)}=\frac{\left(2-\frac{1}{0+1}\right)}{\left(\frac{1}{0+1}-0\right)}=1\)
Logarithmic Function Question 4:
If log 2 = 0.2614, log 3 = 0.3521, log 6 = ?
Answer (Detailed Solution Below)
Logarithmic Function Question 4 Detailed Solution
Given the values:
log 2 = 0.2614
log 3 = 0.3521
Formula Used:
Using the logarithm property:
Calculation:
We can write as 6 = 2 x 3
Using the property:
log 6 = log 2 + log 3
Substituting the given values:
⇒ log 6 = 0.6135
Hence the value log 6 is 0.6135.
Therefore, the correct option is (2)