Lagrange's Mean Value Theorem MCQ Quiz in தமிழ் - Objective Question with Answer for Lagrange's Mean Value Theorem - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Mar 16, 2025

பெறு Lagrange's Mean Value Theorem பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Lagrange's Mean Value Theorem MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Lagrange's Mean Value Theorem MCQ Objective Questions

Top Lagrange's Mean Value Theorem MCQ Objective Questions

Lagrange's Mean Value Theorem Question 1:

For the function f(x) = \(\rm x+\frac1x\), c ∈ [1, 3], the value of c for mean value theorem is:

  1. 1
  2. √3
  3. 2
  4. None of these.
  5. 7

Answer (Detailed Solution Below)

Option 2 : √3

Lagrange's Mean Value Theorem Question 1 Detailed Solution

Concept:

Lagrange’s Mean Value Theorem:
If a function f is defined on the closed interval [a, b] satisfying:

  • The function f is continuous on the closed interval [a, b].
  • The function f is differentiable on the open interval (a, b).

Then there exists a value x = c such that f'(c) = \(\rm \frac{f(b)-f(a)}{b-a}\).

 

Calculation:

The given function f(x) = \(\rm x+\frac1x\) is both differentiable and continuous in the interval [1, 3].

f'(x) = \(\rm 1-\frac1{x^2}\)

By the Mean Value Theorem, there exists a c ∈ [1, 3], such that:

f'(c) = \(\rm \frac{f(b)-f(a)}{b-a}\)

⇒ \(\rm 1-\frac1{c^2}=\frac{f(3)-f(1)}{3-1}\)

⇒ \(\rm 1-\frac1{c^2}=\frac{\left(3+\frac13\right)-\left(1+\frac11\right)}{2}\)

⇒ \(\rm 1-\frac1{c^2}=\frac{\frac43}{2}=\frac23\)

⇒ \(\rm \frac1{c^2}=1-\frac23=\frac13\)

⇒ c = √3.

Lagrange's Mean Value Theorem Question 2:

The value of c in Lagrange’s mean value theorem for the function f(x) = x3 − 4x2 + 8x + 11, where x ∈ [0, 1] is

  1. (4 – √7)/3
  2. 2/3
  3. (√7 – 2)/3
  4. (4 – √5)/3
  5. (4 + √7)/3

Answer (Detailed Solution Below)

Option 1 : (4 – √7)/3

Lagrange's Mean Value Theorem Question 2 Detailed Solution

Explanation -

LMVT is applicable on f(x) in [0,1], therefore it is continuous and differentiable in [0,1]

Now, f(0) = 11, f(1) = 16

(x) = 3x2 − 8x + 8

f’(c) = (f(1) – f(0))/(1-0)

= (16 – 11)/1

⇒ 3c2 − 8c + 8 = 5

⇒ 3𝑐2 − 8𝑐 + 3 = 0

c = (8±2√7)/6 = (4±√7)/3

As c ∈ (0,1)

We get c = (4 – √7)/3

Hence the Correct option is (1)

Lagrange's Mean Value Theorem Question 3:

Let the function, f : [-7, 0] → R be continuous on [−7, 0] and differentiable on (−7, 0). If f(-7)= −3 and f'(𝑥) ≤ 2, for all x ∈ (−7, 0), then for all such functions f, f(−1) + f(0) lies in the interval:

  1. [-6, 20]
  2. (-∞, 20]
  3. (-∞, 11]
  4. [-3, 11]
  5. (-∞, 20)

Answer (Detailed Solution Below)

Option 2 : (-∞, 20]

Lagrange's Mean Value Theorem Question 3 Detailed Solution

Explanation -

f(-7) = -3 and f’(x) ≤ 2

Applying LMVT in [-7, 0], we get

(f(-7) – f(0))/-7 = f’(c) ≤ 2

(-3-f(0))/-7 ≤ 2

f(0) + 3 ≤ 14

f(0) ≤ 11

Applying LMVT in [-7, -1], we get

(f(-7) – f(-1))/(-7 +1) = f’(c) ≤ 2

-3 – f(-1))/-6 = f’(c) ≤ 2

f(-1) + 3 = ≤ 12

f(-1) ≤ 9

Therefore f(-1) + f(0) ≤ 20

Hence Option (2) is correct.

Lagrange's Mean Value Theorem Question 4:

For the function f(x) = x + x-1, x ∈ [1, 3], the value of C for mean value theorem is:

  1. √3
  2. 1
  3. √2
  4. √5

Answer (Detailed Solution Below)

Option 1 : √3

Lagrange's Mean Value Theorem Question 4 Detailed Solution

Concept

Mean Value Theorem: If a function f(x) is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one number C in the interval (a, b) such that:

\(\frac{f(b) - f(a)}{b - a} = f'(C)\)

Calculation

Given: \(f(x) = x + x^{-1}\), \(x \in [1, 3]\)

 

Here, \(a = 1\), \(b = 3\)

\(f(a) = f(1) = 1 + 1^{-1} = 1 + 1 = 2\)

\(f(b) = f(3) = 3 + 3^{-1} = 3 + \frac{1}{3} = \frac{10}{3}\)

\(f'(x) = 1 - x^{-2} = 1 - \frac{1}{x^2}\)

Now, \(\frac{f(3) - f(1)}{3 - 1} = f'(C)\)

\(\frac{\frac{10}{3} - 2}{3 - 1} = 1 - \frac{1}{C^2}\)

\(\frac{\frac{4}{3}}{2} = 1 - \frac{1}{C^2}\)

\(\frac{2}{3} = 1 - \frac{1}{C^2}\)

\(\frac{1}{C^2} = 1 - \frac{2}{3} = \frac{1}{3}\)

\(C^2 = 3\)

\(C = \pm \sqrt{3}\)

Since \(C \in (1, 3)\), we take the positive value.

\(C = \sqrt{3}\)

Hence option 1 is correct.

Lagrange's Mean Value Theorem Question 5:

For all \(x \in [0,2024]\) assume that f(x) is differentiable, f(0) = -2 and \(f'(x) \geq 5\). Then the least possible value of f(2024) is

  1. 10,120
  2. 10,118
  3. 10,122
  4. 2024

Answer (Detailed Solution Below)

Option 2 : 10,118

Lagrange's Mean Value Theorem Question 5 Detailed Solution

Calculation

Given:

For all \(x \in [0, 2024]\)\(f(x)\) is differentiable.

\(f(0) = -2\) and \(f'(x) \ge 5\).

By the Mean Value Theorem, there exists \(c \in (0, 2024)\) such that

\(f'(c) = \frac{f(2024) - f(0)}{2024 - 0}\)

\(f'(c) = \frac{f(2024) - (-2)}{2024}\)

\(f(2024) = 2024 f'(c) - 2\)

Since \(f'(x) \ge 5\), we have \(f'(c) \ge 5\).

\(f(2024) \ge 2024 \times 5 - 2\)

\(f(2024) \ge 10120 - 2\)

\(f(2024) \ge 10118\)

∴ The least possible value of \(f(2024)\) is 10118.

Hence option 2 is correct

Lagrange's Mean Value Theorem Question 6:

Let f(x) be a twice differentiable fucntion such that f ''(x) < 0 in [1, 3]. Which among the following is true?

  1. f(3) + f(1) < 2f(2)
  2. f(3) - f(1) < 2f(2)
  3. f(3) + f(1) > 2f(2)
  4. f(3) + f(2) < 2f(1)
  5. f(3) + f(1) < 2f

Answer (Detailed Solution Below)

Option 1 : f(3) + f(1) < 2f(2)

Lagrange's Mean Value Theorem Question 6 Detailed Solution

Concept: 

Lagrange mean value theorem (LMVT)

Let f(x) be a function defined in [a, b] such that:

  • f(x) is continuous in [a, b]
  • f(x) differentiable in (a, b)

Then, there exists at least one point such that c ∈ (a, b) such that

\(f'\left( c \right) = \frac{{f\left( b \right) - f\left( a \right)}}{{b - a}}\)

Calculation:

Given, f ''(x) < 0

⇒ f '(x) is decreasing in [1, 3]

Let C1 ∈ (1, 2). Using LMVT:

f '(C1) = \(\displaystyle \frac{f(2)-f(1)}{2-1}\) = f(2) - f(1)

Let C2 ∈ (2, 3). Using LMVT:

f '(C2) = \(\displaystyle \frac{f(3)-f(2)}{3-2}\) = f(3) - f(2)

Since, f '(x) is a decresing function

⇒ f '(C2f '(C1

⇒ f(3) - f(2) < f(2) - f(1)

⇒ f(3) + f(1) < 2f(2)

∴ f(3) + f(1) < 2f(2).

The correct answer is Option 1.

Lagrange's Mean Value Theorem Question 7:

The value of c for the function f(x) = log x on [1, e] if LMVT can be applied is

  1. e - 2
  2. e + 1
  3. e - 1
  4. e

Answer (Detailed Solution Below)

Option 3 : e - 1

Lagrange's Mean Value Theorem Question 7 Detailed Solution

Concept Used:

Lagrange's Mean Value Theorem (LMVT): If f(x) is continuous on [a, b] and differentiable on (a, b), then there exists a c in (a, b) such that \(f'(c) = \frac{f(b) - f(a)}{b - a}\)

Calculation

f(x) = log x

⇒ f'(x) = 1/x

a = 1, b = e

f(a) = f(1) = log 1 = 0

f(b) = f(e) = log e = 1

\(f'(c) = \frac{f(e) - f(1)}{e - 1}\)

\(\frac{1}{c} = \frac{1 - 0}{e - 1}\)

\(\frac{1}{c} = \frac{1}{e - 1}\)

⇒ c = e - 1

∴ The value of c is e - 1.

Hence option 3 is correct

Lagrange's Mean Value Theorem Question 8:

The value of c of Lagrange's mean value theorem for \(f(x)=\sqrt{25-x^{2}}\) on [1, 5] is

  1. \(\sqrt{15}\)
  2. 5
  3. \(\sqrt{10}\)
  4. 1

Answer (Detailed Solution Below)

Option 1 : \(\sqrt{15}\)

Lagrange's Mean Value Theorem Question 8 Detailed Solution

Calculation:

Using Lagrange's mean value theorem,

f '(c) = \(\frac{f(b)-f(a)}{b-a}\)

⇒ \(\frac{-c}{\sqrt{25 - c^2}} = \frac{\sqrt{25 - 5^2} - \sqrt{25 - 1^2}}{5 - 1}\)

⇒ \(\frac{-c}{\sqrt{25 - c^2}} = \frac{\sqrt{25 - 25} - \sqrt{25 - 1}}{4}\)

⇒ \(\frac{-c}{\sqrt{25 - c^2}} = \frac{-\sqrt{24}}{4}\)

⇒ \(4c = \sqrt{24} \cdot \sqrt{25 - c^2}\)

⇒ 16c2 = 24(25 - c2)

⇒ 16c2 + 24c2 - 600 = 0

40c2 = 600

c2 = 15

c = ± \(\sqrt{15}\)

⇒ c = \(\sqrt{15}\) {∵ - \(\sqrt{15}\) ∈ [1, 5]} 

∴ The value of c is \(\sqrt{15}\).

The correct answer is Option 1.

Lagrange's Mean Value Theorem Question 9:

The value of c in Lagrange’s mean value theorem for the function f(x) = x3 − 4x2 + 8x + 11, where x ∈ [0, 1] is

  1. (4 – √7)/3
  2. 2/3
  3. (√7 – 2)/3
  4. (4 – √5)/3

Answer (Detailed Solution Below)

Option 1 : (4 – √7)/3

Lagrange's Mean Value Theorem Question 9 Detailed Solution

Explanation -

LMVT is applicable on f(x) in [0,1], therefore it is continuous and differentiable in [0,1]

Now, f(0) = 11, f(1) = 16

(x) = 3x2 − 8x + 8

f’(c) = (f(1) – f(0))/(1-0)

= (16 – 11)/1

⇒ 3c2 − 8c + 8 = 5

⇒ 3𝑐2 − 8𝑐 + 3 = 0

c = (8±2√7)/6 = (4±√7)/3

As c ∈ (0,1)

We get c = (4 – √7)/3

Hence the Correct option is (1)

Lagrange's Mean Value Theorem Question 10:

The value of c in (0, 2) satisfying the mean value theorem for the function f(x) = x (x - 1)2, x ϵ [0, 2] is equal to

  1. 2/3
  2. 4/3
  3. 4/9
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 4/3

Lagrange's Mean Value Theorem Question 10 Detailed Solution

Concept

Lagrange mean value theorem (LMVT)

Let f(x) be a function defined in [a, b] such that

f (x) is continuous in [a, b] and differentiable in (a, b)

Then there exists at least one point such that C ∈ (a, b) such that

\(f'\left( c \right) = \frac{{f\left( b \right) - f\left( a \right)}}{{b - a}}\)

Calculation

Given:

f(x) = x(x -1)

⇒ f(0) = 0

f(2) = 2 

⇒  f(0) ≠ f(2)

Thus mean value theorem is applicable

Then, \(f'(x) = \frac{{f(2) - f(0)}}{{2 - 0}}\)

\( \Rightarrow 3{x^2} - 4x + 1 = \frac{{2 - 0}}{{2 - 0}} = 1 \)

\(\Rightarrow 3{x^2} - 4x = 0\)

\( \Rightarrow x(3x - 4) = 0 \)

\(\Rightarrow x = 0,x = 4/3.\)

We will take only x = 4/3 ϵ (0, 2) 

Get Free Access Now
Hot Links: teen patti gold new version 2024 teen patti pro teen patti master downloadable content teen patti bliss