Chain Rule MCQ Quiz in தமிழ் - Objective Question with Answer for Chain Rule - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Mar 10, 2025

பெறு Chain Rule பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Chain Rule MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Chain Rule MCQ Objective Questions

Top Chain Rule MCQ Objective Questions

Chain Rule Question 1:

Differentiate cos(cos(x)) with respect to x ?

  1. \(\rm\sin(sin(x))(sin(x))\)
  2. \(\rm\sin(sin(x))(cos(x))\)
  3. \(\rm\cos(sin(x))(sin(x))\)
  4. \(\rm\sin(cos(x))(sin(x))\)

Answer (Detailed Solution Below)

Option 4 : \(\rm\sin(cos(x))(sin(x))\)

Chain Rule Question 1 Detailed Solution

Concept:

Chain rule:

Let y = f(v) be a differentiable function of v and v = g(x) be a differentiable function of x then \(\frac{{dy}}{{dx}} = \frac{{dy}}{{dv}} ⋅ \frac{{dv}}{{dx}}\)

Calculation:

Let y = cos(cos(x))

⇒ \(\rm \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}cos(cos(x))\)

⇒ \(\rm \frac{\mathrm{d} y}{\mathrm{d} x}= \ -\sin(cos(x))\frac{\mathrm{d} }{\mathrm{d} x}(cos(x))\)

⇒ \(\rm \frac{\mathrm{d} y}{\mathrm{d} x}=-sin(cos(x))(-sin(x))\)

⇒ \(\rm \frac{\mathrm{d} y}{\mathrm{d} x}=sin(cos(x))(sin(x))\)

Chain Rule Question 2:

Find \(\frac{d}{d x}(\log \cos x)\):

  1. tan x
  2. \(\frac{1}{\cos x}\)
  3. 1
  4. -tan x

Answer (Detailed Solution Below)

Option 4 : -tan x

Chain Rule Question 2 Detailed Solution

Formula used:

\(\frac{d}{d x}(log x) =\frac{1}{x}\)

\(\frac{d}{d x}(\cos x) = - sin x\)

Calculation:

Let,

\(\frac{d}{d x}(\log \cos x)\)

(1/cos x) \(\frac{d}{d x}( \cos x)\)

(1/cos x) × (-  sin x)

∴ \(\frac{d}{d x}(\log \cos x)\) = - tan x

Chain Rule Question 3:

Differentiate cos (sin x) with respect to x:

  1. −sin x ⋅ cos (cos x)
  2. −cos x ⋅ sin (sin x)
  3. cos x ⋅ sin (sin x)
  4. sin x ⋅ cos (sin x)

Answer (Detailed Solution Below)

Option 2 : −cos x ⋅ sin (sin x)

Chain Rule Question 3 Detailed Solution

Given:

f(x) = cos(sin(x))

Concept used:

The chain rule states that if you have a composition of functions, like f(g(x)), the derivative is f′(g(x)) × g′(x).

Calculation:

⇒ f(u) = cos(u)

⇒ f'(u) = -sin(u) (derivative of cos(u))

⇒ g(x) = sin(x)

⇒ g'(x) = cos(x) (derivative of sin(x))

\(\dfrac{d}{dx}\)[cos(sin(x))] = f'(g(x)) × g'(x)

\(\dfrac{d}{dx}\)[cos(sin(x))] = -sin(sin(x)) × cos(x)

∴ The derivative of cos(sin(x)) with respect to x is −cos x ⋅ sin (sin x)

Chain Rule Question 4:

The multivariable chain rule is ______________.

  1. df/dx = ( df/dt).( dt/dx) 
  2. dx/dt = ( df/dt).( dt/dx )
  3. df/dx = ( dx/df ).( df/dt ) 
  4. dy/df = (df/dt).(dt/dy)

Answer (Detailed Solution Below)

Option 1 : df/dx = ( df/dt).( dt/dx) 

Chain Rule Question 4 Detailed Solution

Explanation:

If f is a function of x only, then we revert back to the single-variable chain rule:

df/dx = df/dt × dt/dx

In this scenario, f depends on x indirectly through an intermediate variable t.

This expression is saying the derivative of f with respect to x is equal to the derivative of f with respect to t multiplied by the derivative of t with respect to x.

Chain Rule Question 5:

Find \(\rm \frac{d}{dx} (e^{\tan {x^2}}) \) = ?

  1. x⋅\(\rm e^{\tan {x^2}} \)⋅sec2 x
  2. 2x⋅\(\rm e^{\tan {x^2}} \)⋅sec2 x2
  3. 2x⋅\(\rm e^{\tan {x}} \)⋅sec2 x2
  4. 2x⋅\(\rm e^{\tan {x^2}} \)⋅sec x2

Answer (Detailed Solution Below)

Option 2 : 2x⋅\(\rm e^{\tan {x^2}} \)⋅sec2 x2

Chain Rule Question 5 Detailed Solution

Concept:

Chain rule: \(\rm\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)\)

Differentiation Formulas

\(\rm \frac{d\: (tan x)}{dx}\) = sec2 x 

\(\rm \frac{d}{dx} (e^{x}) = e^{x} \)

\(\rm \frac{d}{dx} (x^{n}) = n x^{n - 1} \)

Calculation:

Given: \(\rm \frac{d}{dx} (e^{\tan {x^2}}) \)

\(\rm e^{\tan {x^2}} \) \(\rm \frac{d}{dx} (\tan x^2)\)

\(\rm e^{\tan {x^2}} \)⋅sec2 x2

= 2x⋅\(\rm e^{\tan {x^2}} \)⋅sec2 x2

Chain Rule Question 6:

Differentiate sin(sin(x)) with respect to x ?

  1. \(\rm\cos(sin(x))(cos(x))\)
  2. \(\rm\sin(sin(x))(cos(x))\)
  3. \(\rm\cos(sin(x))(sin(x))\)
  4. \(\rm\cos(cos(x))(cos(x))\)

Answer (Detailed Solution Below)

Option 1 : \(\rm\cos(sin(x))(cos(x))\)

Chain Rule Question 6 Detailed Solution

Concept:

Chain rule:

Let y = f(v) be a differentiable function of v and v = g(x) be a differentiable function of x then \(\frac{{dy}}{{dx}} = \frac{{dy}}{{dv}} ⋅ \frac{{dv}}{{dx}}\)

Calculation:

Let y = sin(sin(x))

⇒ \(\rm \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}sin(sin(x))\)

⇒ \(\rm \frac{\mathrm{d} y}{\mathrm{d} x}=cos(sin(x))\frac{\mathrm{d} }{\mathrm{d} x}(sin(x))\)

⇒ \(\rm \frac{\mathrm{d} y}{\mathrm{d} x}=cos(sin(x))(cos(x))\)

Chain Rule Question 7:

Find the derivative of log (sin ex)

  1. e- x ⋅ tan ex
  2. tan e2x
  3. -ex ⋅ tan ex
  4. ex ⋅ cot ex

Answer (Detailed Solution Below)

Option 4 : ex ⋅ cot ex

Chain Rule Question 7 Detailed Solution

Concept:

Chain rule: \(\rm\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)\)

\(\rm\frac{d}{d x}[\sin x]=cos x\)

\(\rm\frac{d}{d x}[\ e^x]=e^x\)

\(\rm\frac{d}{d x}[\log x]= {1\over x}\)

Calculation:

Given: f(x) =  log (sin ex)

f'(x) = \(\rm 1\over {\sin e^x}\) ⋅ \(\rm\frac{d}{d x}[\sin e^x]\)

= \(\rm 1\over {\sin e^x}\)⋅ (cos ex) ⋅ \(\rm\frac{d}{d x}(e^x)\)

\(\rm {{\cos e^x}\over {\sin e^x}} ⋅ e^x\)              (∵ \(\rm {{\cos x}\over {\sin x}} = cot\ x\))

= ex⋅ cot ex

Chain Rule Question 8:

Comprehension:

Direction : Consider the following for the items that follow :

Let f : (-1, 1) → R be a differentiable function with f(0) = -1 and f’(0) = 1 Let h(x) = f(2f(x) +2) and g(x) = (h(x))2

What is g’(0) equal to? 

  1. -4
  2. -2
  3. 0
  4. 4

Answer (Detailed Solution Below)

Option 1 : -4

Chain Rule Question 8 Detailed Solution

Explanation:

Given:

f(0) = -1 and f'(0) = 1 Let h(x) = f(2f(x) +2) and g(x) = (h(x))2 

⇒ g(x) = (h(x))2

⇒ g'(x) = 2(h(x)).h'(x)

⇒ g'(0) = 2(h(0)).h'(0)

= 2f(2f (0) + 2).2

= 2f(0).2 = (–2).2 = –4

∴ Option (a) is correct

Chain Rule Question 9:

Comprehension:

Direction : Consider the following for the items that follow :

Let f : (-1, 1) → R be a differentiable function with f(0) = -1 and f’(0) = 1 Let h(x) = f(2f(x) +2) and g(x) = (h(x))2

What is h’(0) equal to? 

  1. -2
  2. -1
  3. 0
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Chain Rule Question 9 Detailed Solution

Explanation:

Let f: (–1, 1)→ R be a differentiable function with f(0) = –1 and f'(0) = 1

⇒ h(x) = f(2f(x) + 2)

⇒ h'(x) = f'(2f(x) + 2)2f'(x)

⇒ h'(0) = f'(2f(0) + 2).2f'(0)

= f'(–2 + 2).2(1)

= f'(0).2 = (1).2 = 2

∴ Option (d) is correct.

Chain Rule Question 10:

Differentiate sin (x2 + 9) with respect to x.

  1. 2.cos (x2 + 9)
  2. 2x.sin (x2 + 9)
  3. 2cos (x + 9)
  4. 2x.cos (x2 + 9)
  5. 2cos (x + 7)

Answer (Detailed Solution Below)

Option 4 : 2x.cos (x2 + 9)

Chain Rule Question 10 Detailed Solution

Given:

Differentiate sin(x2 + 9) with respect to x.

Formula used:

Chain Rule: If y = sin(u) and u = x2 + 9, then dy/dx = cos(u) × du/dx

Calculation:

Let y = sin(x2 + 9)

⇒ dy/dx = cos(x2 + 9) × (d/dx)(x2 + 9)

⇒ dy/dx = cos(x2 + 9) × 2x

⇒ dy/dx = 2x cos(x2 + 9)

∴ The correct answer is option (4).

Get Free Access Now
Hot Links: teen patti lotus teen patti online game teen patti master apk download teen patti rich