Continuity of a function MCQ Quiz in मराठी - Objective Question with Answer for Continuity of a function - मोफत PDF डाउनलोड करा
Last updated on Mar 10, 2025
Latest Continuity of a function MCQ Objective Questions
Top Continuity of a function MCQ Objective Questions
Continuity of a function Question 1:
The value of x for which the function \(\rm f(x)= \frac{x^2-5x-6}{x^2 +5x-6}\) is not continuous are ?
Answer (Detailed Solution Below)
Continuity of a function Question 1 Detailed Solution
Concept:
For a function say f, \(\mathop {\lim }\limits_{x \to a} f(x)\) exists
\( ⇒ \mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \;\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = l = \;\mathop {\lim }\limits_{x \to a} f(x)\), where l is a finite value.
Any function say f is said to be continuous at point say a if and only if \(\mathop {\lim }\limits_{x \to a} f(x) = l = f\left( a \right)\), where l is a finite value.
Calculation:
Given: \(\rm f(x)= \frac{x^2-5x-6}{x^2 +5x-6}\)
Here, we have to find the value of x for which f(x) is not continuous.
So, if any function is not continuous at x = a then \(\mathop {\lim }\limits_{x \to a} f(x) = l \neq f\left( a \right)\)
So, for the function f(x) if denominator is 0 at x = a then we can say that f(a) is infinite and limit cannot exist.
Let's find the value of x for which the denominator of f(x) is 0.
⇒ x2 + 5x - 6 = 0
⇒ (x + 6) (x - 1) = 0.
⇒ x = -6, 1.
Hence, option 3 is correct.
Continuity of a function Question 2:
If \(f\left( x \right) = \frac{{\sin \left( {{e^{x - 2}} - 1} \right)}}{{\log \left( {x - 1} \right)}},\) x ≠ 2 and f(x) = k
Then the value of k for which f will be continuous at x = 2 is:Answer (Detailed Solution Below)
Continuity of a function Question 2 Detailed Solution
Concept:
Continuity:
For a function say f, \(\mathop {\lim }\limits_{x \to a} f(x)\) exists
\( \mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \;\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = l = \;\mathop {\lim }\limits_{x \to a} f(x)\)
where l is a finite value.
Any function say f is said to be continuous at a point say 'a', if and only if:
\(\mathop {\lim }\limits_{x \to a} f(x) = l = f\left( a \right)\)
where l is a finite value.
Calculation:
\(\mathop {\lim }\limits_{x \to 2} \frac{{\sin \left( {{e^{x - 2}} - 1} \right)}}{{\log \left( {x - 1} \right)}}\)
On substituting h = x – 2, we get:
\( = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {{e^h} - 1} \right)}}{{\log \left( {1 + h} \right)}}\)
This can be rearranged as:
\( = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {{e^h} - 1} \right)}}{{{e^h} - 1}} \cdot \frac{{{e^h} - 1}}{h} \cdot \frac{h}{{\log \left( {1 + h} \right)}}\)
= 1 ⋅ 1 ⋅ 1
= 1 and f(2) = k
∴ For the function to be continuous the value of the function f(x) at x = 2 must equal the limiting value of 1, i.e. k = 1
Continuity of a function Question 3:
Consider the following statements:
1. \(\displaystyle\lim_{\rm x\rightarrow 0} \sin \dfrac{1}{\rm x}\) does not exist
2. \(\displaystyle\lim_{\rm x\rightarrow 0} \rm x \cdot sin \dfrac{1}{\rm x} \) exists.
Which of the above statements is / are correct?
Answer (Detailed Solution Below)
Continuity of a function Question 3 Detailed Solution
Concept:
Limit exists if LHL = RHL ⇔ \(\rm\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)\)
Calculation:
1. \(\displaystyle\lim_{\rm x\rightarrow 0} \sin \dfrac{1}{\rm x}\)
⇒ -1 ≤ sin \(\rm \frac{1}{x}\) ≤ 1
⇒ -1 ≤ \(\displaystyle\lim_{\rm x\rightarrow 0} \sin \dfrac{1}{\rm x}\) ≤ 1
Here, LHL ≠ RHL, so limit doesn't exist.
2. We have, \(\displaystyle\lim_{\rm x→ 0} \rm x \cdot sin \dfrac{1}{\rm x} \)
Let, x = 1/t, if x → 0, t → 1/x = ∞
\(\therefore \displaystyle\lim_{\rm t→ ∞} \rm \frac{1}{t} \cdot sin \ t =0\) (∵ something divide by ∞ = 0)
Here, LHL = RHL, so the limit exists
Hence, option (3) is correct.
Continuity of a function Question 4:
Let the function f(x) defined as \(f(x)=\frac{x-|x|}{x}\), then
Answer (Detailed Solution Below)
Continuity of a function Question 4 Detailed Solution
The correct answer is option 4.
Given: \(f(x)=\dfrac{x-|x|}{x}\)
Calculation:
⇒ \(f(x)=\dfrac{x-|x|}{x}\)
For the value of x = 2
The function f(2) = \(\dfrac{2-|2|}{2}\) = 0
For the value of x = 0; f(0) = \(\dfrac{0-|0|}{0}\) = Impossible value
For the value of x = -2; f(-2) = \(\dfrac{-2-|-2|}{-2}\) = 2
So, the function has some definite solution for all the values of x except x = 0.
Hence, the function is a continuous function for all the values of x except x = 0.
Continuity of a function Question 5:
Consider the following statements in respect of f(x) = |x| - 1
1. f(x) is continuous at x = 1.
2. f(x) is differentiable at x = 0.
Which of the above statements is/are correct?
Answer (Detailed Solution Below)
Continuity of a function Question 5 Detailed Solution
Concept:
Differentiable Functions:
- If a graph has a sharp corner at a point, then the function is not differentiable at that point.
- If a graph has a break at a point, then the function is not differentiable at that point.
- If a graph has a vertical tangent line at a point, then the function is not differentiable at that point.
Calculation:
Givne that,
f(x) = |x| - 1 ----(1)
Step: 1
Step: 2
Step: 3
Clearly, we can see that,
f(x) is continuous at x = 1 and
f(x) is not differentiable at x = 0 because there is a corner at x = 0.
∴ Only statement 1 is correct.
Additional Information
- Differentiable functions are those functions whose derivatives exist.
- If a function is differentiable, then it is continuous.
- If a function is continuous, then it is not necessarily differentiable.
- The graph of a differentiable function does not have breaks, corners, or cusps.
Continuity of a function Question 6:
If \(\rm f(x)=\dfrac{\sin x}{x}\), where x ∈ R, is to be continuous at x = 0, then the value of the function at x = 0
Answer (Detailed Solution Below)
Continuity of a function Question 6 Detailed Solution
Concept:
L-Hospital Rule: Let f(x) and g(x) be two functions
Suppose that we have one of the following cases,
I. \(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} \frac{{{\rm{f}}\left( {\rm{x}} \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}} = {\rm{\;}}\frac{0}{0}\)
II. \(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} \frac{{{\rm{f}}\left( {\rm{x}} \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}} = {\rm{\;}}\frac{\infty }{\infty }\)
Then we can apply L-Hospital Rule ⇔ \(\mathop {\lim }\limits_{{\bf{x}} \to {\bf{a}}} \frac{{{\bf{f}}\left( {\bf{x}} \right)}}{{{\bf{g}}\left( {\bf{x}} \right)}} = \;\mathop {\lim }\limits_{{\bf{x}} \to {\bf{a}}} \frac{{{\bf{f}}'\left( {\bf{x}} \right)}}{{{\bf{g}}'\left( {\bf{x}} \right)}}\)
Note: We have to differentiate both the numerator and denominator with respect to x unless and until \(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} \frac{{{\rm{f}}\left( {\rm{x}} \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}} = {\rm{l}} \ne \frac{0}{0}\) where l is a finite value.
A function f(x) is said to be continuous at a point x = a, in its domain if \(\rm \mathop {\lim }\limits_{x \to {\rm{a}}} f\left( x \right) = f\left( a \right)\) exists
Calculation:
Given: \(\rm f(x)=\dfrac{\sin x}{x}\)
To Find: f(0)
Function is continuous at x = 0
Therefore, f(0) = \( \rm \lim_{x\rightarrow 0} f(x)\)
\(= \rm \lim_{x\rightarrow 0} \frac{\sin x}{x}\) (Form 0/0)
Apply L-Hospital Rule,
\(= \rm \lim_{x\rightarrow 0} \frac{\cos x}{1}\\=\frac{\cos 0}{1} = 1\)
Continuity of a function Question 7:
Consider the following functions:
1. f(x) = ex, where x > 0
2. g(x) = |x - 3|
Which of the above functions is / are continuous?
Answer (Detailed Solution Below)
Continuity of a function Question 7 Detailed Solution
Concept:
f(x) is Continuous at x = a, if \(\rm\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=lim _{x \rightarrow a} f(x)\) OR if derivative of function is defined
If f(x) = |x| ⇔ f(x) = -x, for x < 0, and f(x) = x, for x > 0,
Calculation:
1 f(x) = ex
The derivative of the function is ex and it is defined everywhere from negative infinity to positive infinity and it doesn't take zero value at any point. So, ex is a continuous function.
2.
\(\begin{array}{l} \rm LHL=\lim _{x \rightarrow 3^{-}} g(x)=\lim _{x \rightarrow 3^{-}}(-(x-3))=0 \\ \rm RHL=\lim _{x \rightarrow 3^{+}} g(x)=\lim _{x \rightarrow 3^{+}} x-3=0 \\ \rm \lim _{x \rightarrow 3^{-}} g(x) =\lim _{x \rightarrow 3^{+}} g(x) \end{array}\)
So, g(x) is continuous
Hence, option Both 1 and 2 correct.
Continuity of a function Question 8:
The function f defined by \(f(x)=\left\{\begin{array}{l}\frac{x^2}{a}-a, \text { if } 0
Answer (Detailed Solution Below)
Continuity of a function Question 8 Detailed Solution
Explanation:
Here, it is given that
\(f(x)= \begin{cases}\frac{x^2}{a}-a, & (0
Continuity at x = a, f(a) = 0
Hence, LHL = \(\lim _{x \rightarrow a^{-}}\) f(x) = \(\lim _{h \rightarrow 0} \) f(a - h) = \(\lim _{h \rightarrow 0}\) \(\frac{(a-h)^2}{a}-a\)
\(=\lim _{h \rightarrow 0} \frac{(a-h)^2-a^2}{a}=\frac{a^2-a^2}{a}=0\)
and RHL = \(\lim _{x \rightarrow a^{+}}\) f(x) = \(\lim _{h \rightarrow 0}\) \(a-\frac{a^3}{(a+h)^2}\)
\(=\lim _{h \rightarrow 0} \frac{a(a+h)^2-a^3}{(a+h)^2}=\frac{a^3-a^3}{a^2}=0\)
Hence, LHL = f(a) = RHL
Hence, f(x) is continuous.
Hence, f(x) is continuous on ] 0, ∞[
Now, we can check the differentiability at x = a
Lf'(a) = \(\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}\)
\(=\lim _{h \rightarrow 0}\frac{ \frac{(a-h)^2}{a}-a-0 }{-h}\)
\(=\lim _{h \rightarrow 0} \frac{(a-h)^2-a^2}{-a h}=\lim _{h \rightarrow 0} \frac{a^2+h^2-2 a h-a^2}{-a h} \)
\(=\lim _{h \rightarrow 0} \frac{h(h-2 a)}{-a h}=\frac{-2 a}{-a}=2\)
and \(R f^{\prime}(a) =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\)
\( =\lim _{h \rightarrow 0} \frac{a-\frac{a^3}{(a+h)^2}-0}{h}\)
\(=\lim _{h \rightarrow 0} \frac{a(a+h)^2-a^3}{h(a+h)^2}\)
\(=\lim _{h \rightarrow 0} \frac{a^3+a h^2+2 a^2 h-a^3}{h(a+h)^2}\)
\(=\lim _{h \rightarrow 0} \frac{a h(h+2 a)}{h(a+h)^2}=\lim _{h \rightarrow 0} \frac{a h+2 a^2}{(a+h)^2}=\frac{2 a^2}{a^2}=2\)
Hence, Lf' (a) = Rf' (a)
Hence, f(x) is differentiable at x = a.
Therefore, f(x) is differentiable at (0, ∞).
Continuity of a function Question 9:
Let f ∶ R → R be a function defined as
f(x) = \(\left\{\begin{array}{ll}\frac{\sin (a+1) x+\sin 2 x}{2 x} &, \text {if } x<0 \\b &, \text {if } x = 0 \\\frac{\sqrt{x+b x^{3}}−\sqrt{x}}{b x^{5/2}} &, \text {if } x>0\end{array}\right.\)
If f is continuous at x = 0, then the value of a + b is equal to :
Answer (Detailed Solution Below)
Continuity of a function Question 9 Detailed Solution
Concept:
- A function f(x) is continuous at x = a if \(\lim_{x\rightarrow a^-}\)f(x)= \(\lim_{x\rightarrow a^+}\)f(x)= f(a)
- \(\lim_{x\rightarrow 0} \)\(\frac{sinx}{x} \)=1
Explanation:
f(x)=\(\left\{\begin{array}{ll}\frac{\sin (a+1) x+\sin 2 x}{2 x} &, \text {if } x<0 \\b &, \text {if } x = 0 \\\frac{\sqrt{x+b x^{3}}−\sqrt{x}}{b x^{5/2}} &, \text {if } x>0\end{array}\right.\)
Function f(x) is continuous at x= 0 if
\(\lim_{x\rightarrow 0^-}\)f(x) = \(\lim_{x\rightarrow 0^+}\)f(x) = f(0) ---- (1)
Now \(\lim_{x\rightarrow 0^-}\)f(x)= \(\lim_{x\rightarrow 0^-}\) \(\frac{ sin (a+1)× x + sin 2x}{2x}\)
= \(\lim_{x\rightarrow 0^-}\) \(\frac{ sin (a+1)× x}{(a+1)x}× \frac{ (a+1)}{2}\)+ \(\lim_{x\rightarrow 0^-}\) \(\frac{sin2x}{2x} \)
= \(\frac{a+1}{2} \) + 1 ---- (2)
\(\lim_{x\rightarrow 0^+}\)f(x)= \(\lim_{x\rightarrow 0^+}\) \(\frac{\sqrt{x+bx^{3}}-\sqrt{x}}{bx^{\frac{5}{2}}}\)
= \(\lim_{x\rightarrow 0^+}\)\(\frac{\sqrt{x+bx^{3}}-\sqrt{x}}{bx^{\frac{5}{2}}}\)× \(\frac{\sqrt{x+bx^{3}}+\sqrt{x}}{\sqrt{x+bx^{3}}+\sqrt{x}}\)
= \(\lim_{x\rightarrow 0^+}\) \(\frac{x+bx^{3}-x}{bx^{\frac{5}{2}}×\sqrt{x}×(\sqrt{1+bx^{2}}+1)} \) ----- [∵ (a+b) (a- b) = a2 - b2)]
= \(\lim_{x\rightarrow 0^+}\)\(\frac{1}{\sqrt{1+bx^{2}}+1}\) = \(\frac{1}{\sqrt{1+b\times0^{2}}+1} \) =\(\frac{1}{2} \) ----- (3)
f(0) = b ----- (4)
From equations 1, 2, 3, and 4 we get
\(\frac{1}{2}=\frac{a+1}{2}+1 = b\)
⇒ b =\(\frac{1}{2} \) and
⇒ \(\frac{1}{2} \) =\(\frac{a+1}{2}+1\) ⇒ a = -2
∴ a = -2 and b = \(\frac{1}{2} \)
so a + b = \(\frac{-3}{2} \)
The correct option is option (4).
Continuity of a function Question 10:
Test the continuity of a function at x = 2
\(\left\{ {\begin{array}{*{20}{c}} {\frac{5}{2} - \rm x\;\;\;\;\;\;x < 2}\\ {1\;\;\;\;\;\;\;\;\;\;\;\;\;\rm x = 2}\\ {\rm x - \;\frac{3}{2}\;\;\;\;\;x > 2} \end{array}} \right.\)
Answer (Detailed Solution Below)
Continuity of a function Question 10 Detailed Solution
Concept:
The function f(x) is continuous at an if all the below condition follows:
1. f(a) is real and finite.
2. \(\rm \lim_{\alpha \to 0}f(a-\alpha)\text{ and }\lim_{\alpha \to 0}f(a+\alpha)\) are real and finite.
3. \(\rm \lim_{\alpha \to 0}f(a-\alpha)=\lim_{\alpha \to 0}f(a+\alpha)=f(a)\)
Calculation:
f(x) = \(\left\{ {\begin{array}{*{20}{c}} {\frac{5}{2} - \rm x\;\;\;\;\;\;x < 2}\\ {1\;\;\;\;\;\;\;\;\;\;\;\;\;\rm x = 2}\\ {\rm x - \;\frac{3}{2}\;\;\;\;\;x > 2} \end{array}} \right.\)
\(\rm \lim_{\alpha \to 0}f(x-\alpha)={\frac{5}{2} - \rm x}\)
For x = 2,
⇒ \(\rm \lim_{\alpha \to 0}f(2-\alpha)=\lim_{\alpha \to 0}\left[\frac{5}{2} - (2-\alpha)\right]\)
⇒ \(\rm \lim_{\alpha \to 0}f(2-\alpha)=\rm \lim_{\alpha \to 0}\left(\frac{1}{2}+\alpha\right) =\boldsymbol{\rm \frac{1}{2}}\)
\(\rm \lim_{\alpha \to 0}f(x+\alpha)=x-\frac{3}{2}\)
For x = 2,
⇒ \(\rm \lim_{\alpha \to 0}f(2+\alpha)=\lim_{\alpha \to 0}\left[(2+\alpha)-\frac{3}{2}\right]\)
⇒ \(\rm \lim_{\alpha \to 0}f(2+\alpha)=\rm \lim_{\alpha \to 0}\left(\frac{1}{2}+\alpha\right) = \boldsymbol{\rm \frac{1}{2}}\)
f(x) = f(2) = 1
\(\rm \lim_{\alpha \to 0}f(2-\alpha)=\lim_{\alpha \to 0}f(2+\alpha)\neq f(2)\)
∴ The function is not continuous at x = 2