Properties of Complex Numbers MCQ Quiz in मल्याळम - Objective Question with Answer for Properties of Complex Numbers - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 8, 2025

നേടുക Properties of Complex Numbers ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Properties of Complex Numbers MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Properties of Complex Numbers MCQ Objective Questions

Top Properties of Complex Numbers MCQ Objective Questions

Properties of Complex Numbers Question 1:

If z1 = 1 - 2i, z2 = 1 + i and z3 = 3 + 4i, then \(\left| {\left( {\frac{1}{{z_1}} + \frac{2}{{z_2}}}\right)\frac{{z_3}}{{z_2}}} \right| \)

  1. \(\frac{\sqrt7}{2}\)
  2. \(\frac{\sqrt5}{2}\)
  3. \(\sqrt \frac{45}{2} \)
  4. \(\frac{\sqrt{15}}{2}\)

Answer (Detailed Solution Below)

Option 3 : \(\sqrt \frac{45}{2} \)

Properties of Complex Numbers Question 1 Detailed Solution

Concept:

If z = a + ib , |z| = \(\sqrt{a^2\,+\,b^2}\)

If z = a + ib , \(\frac{1}{z}\) = \(\frac{a \,-\,ib}{{a^2\,+\,b^2}}\) 

|z1z2| = |z1| × |z2|

Calculation:

Given z1 = 1 - 2i , z2 = 1 + i and z3 = 3 + 4i

∴ \(\frac{1}{z_{1}}\) = \(\frac{1\,+\,2i}{{1^2\,+\,2^2}}\) = \(\frac{1\,+\,2i}{{5}}\)

Similarly  \(\frac{2}{z_{2}}\) = 2 ×  \(\frac{1}{z_{2}}\)  = 2 × \(\frac{1\,-\,i}{{1^2\,+\,1^2}}\) = 2 ×  \(\frac{1\,-\,i}{{2}}\) = (1 - i)

\(\frac{2}{z_{2}}\) = (1 - i)

⇒ \(\frac{1}{z_{2}} \) = \(\frac{1-i}{2}\)

\(\frac{z_3}{z_2}\) = z×  \(\frac{1}{z_{2}} \)  = (3 + 4i) × \(\frac{1-i}{2}\)

⇒ \(\frac{z_3}{z_2}\) =  \(\frac{7+i}{2}\)

 We need to find \(\left| {\left( {\frac{1}{{z_1}} + \frac{2}{{z_2}}}\right)\frac{{z_3}}{{z_2}}} \right| \)

 \(\left| {\left( {\frac{1}{{z_1}} + \frac{2}{{z_2}}}\right)\frac{{z_3}}{{z_2}}} \right| \) = \(\left| {\left( {\frac{1}{{z_1}} + \frac{2}{{z_2}}}\right)} \right| \) × \(\left | \frac{z_3}{z_2} \right|\)

=  \(\left| {\left( {\frac{1\,+\,2i}{{5}} + (1-i)}\right)} \right|\) × \(\Big|\frac{7+i}{2}\Big|\)

\(\Big|\frac{1+2i+5-5i}{5}\Big|\) × \(\Big|\frac{7+i}{2}\Big|\)

\(\Big|\frac{6-3i}{5}\Big|\) × \(\Big|\frac{7+i}{2}\Big|\)

\(\frac{\sqrt{6^2+(-3)^2}}{5} \times \frac{\sqrt{7^2+1^2}}{2}\)

\(\frac{\sqrt{36+9}}{5} \times \frac{\sqrt{49+1}}{2}\)

\(\frac{\sqrt{45}}{5} \times \frac{\sqrt{50}}{2} =\frac{\sqrt{45}}{5} \times \frac{5\sqrt2}{2}\)

=  \(\frac{\sqrt{45} \times \sqrt2}{2}\)

\(\frac{\sqrt{45} }{\sqrt2}\) 

\(\sqrt \frac{45}{2} \)

Evaluating , we get \(\sqrt \frac{45}{2} \).

Properties of Complex Numbers Question 2:

If z1 and z2 are two complex numbers, then Im(z1z2) is

  1. Re (z1) Re (z2) + Im (z1) Im (z2)
  2. Re (z1) Im (z2) + Im (z1) Re (z2)
  3. Re (z1) Im (z2) - Im (z1) Re (z2)
  4. Re (z1) Re (z2) - Im (z1) Im (z2)

Answer (Detailed Solution Below)

Option 2 : Re (z1) Im (z2) + Im (z1) Re (z2)

Properties of Complex Numbers Question 2 Detailed Solution

Concept:

Let z = x + iy be a complex number, Where x is called real part of complex number or Re (z) and y is called Imaginary part of the complex number or Im (z)

Calculation:

Let two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2

Where x1 = Re (z1), x2 = Re (z2) and y1 = Im (z1), y2 = Im (z2).

Now,

z1z2 = (x1 + iy1) (x2 + iy2)

z1z2 = (x1x2 – y1y2)  + i (x1y2 + y1x2)

∴ Im (z1z2) = (x1y2 + y1x2)

= Re (z1) Im (z2) + Im (z1) Re (z2)

Properties of Complex Numbers Question 3:

Find the conjugate of \(\rm i + 3 \over 2i + 1\)

  1. 1 - i
  2. -i - 1
  3. i - 1
  4. 1 + i

Answer (Detailed Solution Below)

Option 4 : 1 + i

Properties of Complex Numbers Question 3 Detailed Solution

Concept:

Conjugate of a complex number:

For any complex number z = x + iy  the conjugate z̅ is given by  z̅ = x - iy

Calculation:

z = \(\rm i + 3 \over 2i + 1\)

z = \(\rm { i + 3 \over 2i + 1}\times {-2i+1\over-2i +1}\)

z = \(\rm -2i^2-6i+i+3\over1 - (2i)^2\)

z = \(\rm {5-5i\over1 + 4}\)

z = \(\rm {5(1 - i)\over5}\)

z = 1 - i

Conjugate of z = z̅  = 1 + i

Properties of Complex Numbers Question 4:

Find the modulus of the complex number \(\frac{1+2i}{1-(1-i)}\).

  1. √5 
  2. √2
  3. √7
  4. 1

Answer (Detailed Solution Below)

Option 1 : √5 

Properties of Complex Numbers Question 4 Detailed Solution

Concept:

Modulus of the Complex Number z = a + ib is given by:

Mod(z) = |z| = \(\sqrt{[Re(z)]^{2}+[Im(z)]^{2}}\)

\(\sqrt{a^{2}+b^{2}}\)

Solution:

\(\frac{1+2i}{1-(1-i)}\) \(\frac{1+2i}{i}\) \(2+\frac{1}{i}\) \(2+\frac{1}{i}\times \frac{i}{i}\) \(2+\frac{i}{i^{2}}\) \(2+\frac{i}{(-1)}\) = 2 - i

 

Modulus of the complex number z = 2 - i is 

\(\sqrt{2^{2}+(-1)^{2}}\) \(\sqrt{4+1}\) \(\sqrt{5}\) 

Properties of Complex Numbers Question 5:

Find the argument of the complex number z = 2 + i 2√3.

  1. 60°
  2. 45°
  3. 30°
  4. 15°

Answer (Detailed Solution Below)

Option 1 : 60°

Properties of Complex Numbers Question 5 Detailed Solution

Concept:

The argument of a complex number z = x + iy

arg(z) = tan-1\(\rm \left(y\over x\right)\)

The angle is according to the sign of the y and x

  • Both positive then angle ∈ [0°, 90°]
  • Negative x and positive y then angle ∈ [90°, 180°]

Calculation:

Given complex number z = 2 + i 2√3

arg(z) = tan-1\(\rm \left(2\sqrt3\over 2\right)\)

arg(z) = tan-1\(\rm \sqrt3\)

arg(z) = 60° (∵ Both positive then angle ∈ [0°, 90°])

Properties of Complex Numbers Question 6:

Let z and w be complex numbers such that z̅ + iw̅ = 0 and arg(zw) = π, then arg(z) is equal to:

  1. \(\pi\over4\)
  2. \(\pi\over2\)
  3. \(3\pi\over2\)
  4. \(3\pi\over4\)

Answer (Detailed Solution Below)

Option 4 : \(3\pi\over4\)

Properties of Complex Numbers Question 6 Detailed Solution

Concept:

Complex Numbers: For a complex number z = a + ib, the following are defined:

  • Conjugate: z̅ = a - ib
  • arg(z) = θ = \(\rm\tan^{-1}\left(b\over a\right)\).
  • arg(z1.z2) = arg(z1) + arg(z2).

 

Calculation:

Given that z̅ + iw̅ = 0.

⇒ z̅ = -iw̅

Taking conjugates, we get:

⇒ z = iw

Multiplying by i, we get:

⇒ w = -iz

Now, arg(zw) = π.

⇒ arg(z.(-iz)) = π

⇒ arg(-i.z2) = π

⇒ arg(-i) + 2 arg(z) = π

⇒ \(-\pi\over2\) + 2 arg(z) = π

⇒ 2 arg(z) = \(3\pi\over2\)

⇒ arg(z) = \(3\pi\over4\).

Properties of Complex Numbers Question 7:

Find the multiplicative inverse of 1 + i?

  1. 0
  2. 1+i
  3. \(\frac{1-i}{2}\)
  4. \(\frac{1+i}{2}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{1-i}{2}\)

Properties of Complex Numbers Question 7 Detailed Solution

Concept:

Multiplicative Inverse of a complex number, z  = \(\frac{1}{z}\)

Application:

Multiplicative Inverse of z = 1 + i is z-1 i.e.

Multiplicative Inverse of z = \(\frac{1}{z}\)

Puttng z = 1 + i, we get,

Multiplicative Inverse of 1 + i  = \(\frac{1}{1+i}\)

Rationalizing, 

=  \(\frac{1}{1+i}\times\frac{1-i}{1-i}\)

=  \(\frac{1-i}{1^2-i^2}\)(Since i2=-1)

=  \(\frac{1-i}{2}\)

Properties of Complex Numbers Question 8:

Argument and modulus of \(\frac{1 + i}{1 - i}\) are respectively

  1. \(\frac{-π}{2}\) and 1
  2. \(\frac{π}{2}\) and \(\sqrt{2}\)
  3. 0 and \(\sqrt{2}\)
  4. \(\frac{π}{2}\) and 1

Answer (Detailed Solution Below)

Option 4 : \(\frac{π}{2}\) and 1

Properties of Complex Numbers Question 8 Detailed Solution

Concept

The general form of a complex number is z = x + iy. The polar representation of z

is z = r(cos θ + i sin θ). Here, r is the modulus of z and θ is called the amplitude or argument of the complex number. The formula to find the amplitude of a complex

number is: \(\displaystyle \theta =tan^{-1}\frac{y}{x}\) and ∣z∣ = \(\sqrt {x^2+y^2}\)

Calculation

\(\displaystyle \frac{1 + i}{1 - i}\)

⇒ \(\displaystyle \frac{1 + i}{1 - i}\) = \(\displaystyle \frac{1 + i}{1 - i} \times \frac{1 + i}{1 + i}\)

⇒ \(\displaystyle \frac{1 + i}{1 - i}=\frac{(1 + i)^2}{1-i^2}=\frac{(1 + i)^2}{2}=\frac{1 + i^2+2i}{2}=i\)

⇒ \(\displaystyle \frac{1 + i}{1 - i}\) = 0 + i

Now, Argument = \(\displaystyle \theta =tan^{-1}\frac{y}{x}\) = \(\displaystyle tan^{-1}\frac{i}{0}=\frac{π}{2}\)

Modulus is ∣z∣ = \(\sqrt {x^2+y^2}\)  = \(\sqrt{0^2+1^2}=1 \)

∴ Argument and modulus of \(\frac{1 + i}{1 - i}\) are respectively \(\frac{π}{2}\) and 1.

Properties of Complex Numbers Question 9:

What is the modulus of  (1 + i)2, Where \(\rm i = \sqrt{-1}\)

  1. 1
  2. 2
  3. -2
  4. 4

Answer (Detailed Solution Below)

Option 2 : 2

Properties of Complex Numbers Question 9 Detailed Solution

Concept:

Let z = x + iy be a complex number, Where x is called real part of the complex number or Re (z) and y is called Imaginary part of the complex number or Im (z)

Modulus of z = |z| = \(\rm \sqrt {x^2+y^2} = \sqrt {Re (z)^2+Im (z)^2}\)

Calculations:

Let z = x + iy = (1 + i)2 = 12 + 2i + i2         (∵ (a + b)2 = a2 + b2 + 2ab)

z = 1 + 2i - 1                                (∵ i2 = -1)

∴ z = x + iy = 2i

So, x = 0  and y = 2

As we know that if z = x + iy be any complex number, then its modulus is given by, |z| = \(\rm \sqrt{x^2+y^2}\)

∴ |z| = \(\rm \sqrt{(0)^2+{2}^2} = \sqrt 4 = 2\) 

Properties of Complex Numbers Question 10:

The curve represented by z z̅  + (1 + i) z +(1 - i) z̅  = 0 will be:

  1. a circle with center at (-1, 1) and radius as √2
  2. an ellipse with semi-major axis as 2 semi-minor axis as 1
  3. a straight line with x - intercept as - 2
  4. a parabola with vertex at (-1, 0)

Answer (Detailed Solution Below)

Option 1 : a circle with center at (-1, 1) and radius as √2

Properties of Complex Numbers Question 10 Detailed Solution

Concept:

The circle is defined as the locus of a point that moves in a plane such that its distance from a fixed point in that plane is constant.

Equation of circle having a center (h, k) and radius a is  given as,

(x - h)2 + (y - k)2 = a2

But when a circle passes through the origin, then the equation of the circle is

x2 + y2 - 2 × h × x - 2 × k × y = 0 ----(1)

a2 = h2 + k-----(2)

Calculation:

Given:

z z̅  + (1 + i) z +(1 - i) z̅  = 0

As we know,

z = x + iy,  = x - iy using these value in the above given equation we get:

(x + iy)(x - iy) + (1 + i)(x + iy) + (1 - i)(x - iy) = 0

x2 + y2 + x + iy + ix - y + x - iy - ix - y = 0

x2 + y2 + 2x - 2y = 0 -----(3)

Comparing (3) with (1) we get:

h = -1 and k = 1 which are centre of circle.

By using h, k values in (2) we get the radius of the circle as √2.

26 June 1

The general equation of a non-degenerate conic section is: Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 where A, B and C are all not zero

The above given equation represents a non-degenerate conics whose nature is given below in the table:

 S.No. 

Condition

Nature of Conic

1

B = 0 and A = C

Circle

2

B = 0 and Either A = 0 or C = 0

Parabola

3

B = 0, A ≠ C and AC > 0

Ellipse

4

B = 0, A ≠ C and sign of A and C are opposite

Hyperbola

 
Get Free Access Now
Hot Links: teen patti master game teen patti game - 3patti poker teen patti gold new version 2024