Mean and Variance of Random variables MCQ Quiz in मल्याळम - Objective Question with Answer for Mean and Variance of Random variables - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 15, 2025
Latest Mean and Variance of Random variables MCQ Objective Questions
Top Mean and Variance of Random variables MCQ Objective Questions
Mean and Variance of Random variables Question 1:
X is a random variable with variance σx2 . The variance of (X + a), where a is a constant
Answer (Detailed Solution Below)
Mean and Variance of Random variables Question 1 Detailed Solution
Concept:
The mean of a random variable also called the expected value is defined as:
\(E\left[ X \right] = \mathop \smallint \limits_{ - \infty }^{ + \infty } x.{f_x}\left( x \right)dx\)
The variance is defined as:
\(\sigma _x^2 = E\left[ {{{\left( {X - {\mu _x}} \right)}^2}} \right]\)
fx(X) is the probability function.
\(E\left[ {{X^2}} \right] = \mathop \smallint \limits_{ - \infty }^{ + \infty } {x^2}{f_x}\left( x \right)dx\)
Property:
\(Var\left[ {aX + b} \right] = E{\left[ {aX + b - \left( {a\mu + b} \right)} \right]^2}\)
\( = E{\left[ {aX - a\mu } \right]^2}\)
\( = E\left[ {{a^2}{{\left( {X - \mu } \right)}^2}} \right]\)
\( =a^2E\left[ {{}{{\left( {X - \mu } \right)}^2}} \right]\)
\(Var\left[ {aX + b} \right] = {a^2}\sigma _X^2\) ---(1)
Analysis:
On comparing with Equation (1), we can write:
\(V\left[ {X + b} \right] = {\left( 1 \right)^2}.\sigma _x^2\)
\( = \sigma _x^2\)
Properties of mean:
1) E[K] = K, Where K is some constant
2) E[c X] = c. E[X], Where c is some constant
3) E[a X + b] = a E[X] + b, Where a and b are constants
4) E[X + Y] = E[X] + E[Y]
Properties of Variance:
1) V[K] = 0, Where K is some constant.
2) V[cX] = c2 V[X]
3) V[aX + b] = a2 V[X]
4) V[aX + bY] = a2 V[X] + b2 V[Y] + 2ab Cov(X,Y)
Cov.(X,Y) = E[XY] - E[X].E[Y]
Mean and Variance of Random variables Question 2:
A coin is tossed three times. Let X denote the number of times a tail follows a head. If μ and σ2 denote the mean and variance of X, then the value of 64(μ + σ2) is :
Answer (Detailed Solution Below)
Mean and Variance of Random variables Question 2 Detailed Solution
Calculation
HHH → 0
HHT → 0
HTH → 1
HTT → 0
THH → 1
THT → 1
TTH → 1
TTT → 0
Probability distribution
\(\begin{array}{c|c|c} \mathrm{x}_{\mathrm{i}} & 0 & 1 \\ \hline \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right) & 1 / 2 & 1 / 2 \end{array}\)
\(\mu=\sum \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}=\frac{1}{2}\)
\(\sigma^{2}=\sum x_{i}^{2} p_{i}-\mu^{2}\)
= \(\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)
\(64\left(\mu+\sigma^{2}\right)=64\left(\frac{1}{2}+\frac{1}{4}\right)=48\)
Hence option 2 is correct
Mean and Variance of Random variables Question 3:
The value of C for which P (x = K) = CK2 can serve as the probability function of a random variable x that takes 0, 1, 2, 3, 4 is
Answer (Detailed Solution Below)
Mean and Variance of Random variables Question 3 Detailed Solution
Concept:
\(\sum\limits_{k = 0}^4 {p(X = K) = 1 } \)
Calculation
\(⇒ \sum\limits_{k = 0}^4 {C{K^2} = 1}\)
⇒ C(12 + 22 + 32 + 42) = 1
⇒ \(C = \frac{1}{{30}}.\)
Mean and Variance of Random variables Question 4:
Consider the following probability mass function (p.m.f.) of a random variable X:
\(p\left( {x,q} \right) = \left\{ {\begin{array}{*{20}{c}} q\\ {1 - q}\\ 0 \end{array}} \right.\begin{array}{*{20}{c}} {if\;X = 0}\\ {if\;X = 1}\\ {otherwise} \end{array}\)
If q = 0.4, the variance of X is___________.
Answer (Detailed Solution Below)
Mean and Variance of Random variables Question 4 Detailed Solution
Concept:
Mean:
Let X is a discrete random variable having the possible values x1, x2, ……xn
If P(X = xi) = f(xi), where i = 1, 2……n, then
E(X) = mean = x1 f(x1) + x2 f(x2)+ …….xn f(xn)
\({\rm{i}}.{\rm{e\;E}}\left( {\rm{x}} \right) = \mathop \sum \limits_{{\rm{i}} = 1}^{\rm{n}} {{\rm{X}}_{\rm{i}}}{\rm{\;f}}\left( {{{\rm{X}}_{\rm{i}}}} \right)\)
\({\rm{E}}\left( {{{\rm{x}}^2}} \right) = \mathop \sum \limits_{{\rm{i}} = 1}^{\rm{n}} X_i^2{\rm{\;f}}\left( {{{\rm{X}}_{\rm{i}}}} \right)\)
Variance:
V(X) = E(X2) – E(X)2
Calculation:
Given q = 0.4
X |
0 |
1 |
p(X) |
0.4 |
0.6 |
Required value = V(X) = E(X2) – [E(X)]2
\(\begin{array}{l} E\left( X \right) = \mathop \sum \limits_i {X_i}{p_i} \; \end{array}\)
\(= 0 \times 0.4 + 1 \times 0.6 = 0.6\)
\( E\left( {{X^2}} \right) = \mathop \sum \limits_i X_i^2{p_i} = {0^2} \times 0.4 + {1^2} \times 0.6 = 0.6\)
\( V\left( X \right) = E\left( {{X^2}} \right) - {\left[ {E\left( X \right)} \right]^2} \)
⇒ V(x) = 0.6 - 0.36 = 0.24
Mean and Variance of Random variables Question 5:
Match the following:
List I | List II | ||
A. | Var(X) | I | ncx qn-x px |
B. | E(X) | II | P(E).P(F) = P(E ∩ F) |
C. | Binomial Distribution | III | E(X2) - [E(X)]2 |
D. | E and F are independent | IV | \(\sum\nolimits_{i = 1}^n {{x_i}{p_i}} \) |
Choose the correct answer from the option given below:
Answer (Detailed Solution Below)
Mean and Variance of Random variables Question 5 Detailed Solution
Explanation:
- For two independent events A and B :
P(A ∩ B) = P(A)P(B) → D - (II)
- A random variable X which takes values 0, 1, 2, ... ,n follow binomial distribution if its probability distribution function is given by,
P(X = x) = nCx qn-x px → C - (I)
- The variance of the random variable X,
Var(X) = E[(X - E[X])]2
⇒ Var(X) = E[X2 - 2XE[X] + (E[X])2]
⇒ Var(X) = E[X2] - 2E[X]E[X] + (E[X])2
⇒ Var(X) = E[X2] - (E[X])2 → A - (III)
- By definition,
E(X) = \(\sum\nolimits_{i = 1}^n {{x_i}{p_i}} \) → B - (IV)
Mean and Variance of Random variables Question 6:
Let X be a discrete random variable. The probability distribution of X is given below:
X | 30 | 10 | –10 |
P(X) | \(\frac{1}{5}\) | \(\frac{3}{10}\) | \(\frac{1}{2}\) |
Then E(X) is equal to
Answer (Detailed Solution Below)
Mean and Variance of Random variables Question 6 Detailed Solution
Concept:
The expectation of a random variable E(X) is given by \(\Sigma {xP(x) }\)
Calculation:
Given:
X | 30 | 10 | –10 |
P(X) | \(\frac{1}{5}\) | \(\frac{3}{10}\) | \(\frac{1}{2}\) |
Expectation E(X) is calculated by \(\Sigma {xP(x) }\)
⇒ E(X) = 30 × \(\frac{1}{5}\) + 10 × \(\frac{3}{10}\) +( - 10)× \(\frac{1}{2}\)
⇒ E(X) = 6 + 3 - 5
⇒ E(X) = 4
∴ E(X) is equal to 4.
The correct answer is option 2.
Mean and Variance of Random variables Question 7:
Let X be a discrete random variable and f be a function given by \(P(X=x)=f(x)=\frac{1}{2^x}\) for \(x=1,2,3,...\). Then the expected value of X are
Answer (Detailed Solution Below)
Mean and Variance of Random variables Question 7 Detailed Solution
Concept:
If \(P(X=x)=f(x)\) is a probability mass function, then
\(\sum_{x\in Range(X)}f(x)=1\)
and the Expected value of X is given by \(E(X)=\sum_{x_{i}}x_{i}f(x_{i})\)
Calculations:
Given:
Therefore the expected value of X is given by,
\(E(X)=\sum_{x_{i}}x_{i}f(x_{i})\)
\(\Rightarrow E(X)=\sum_{x=1}^{\infty}x\frac{1}{2^x}\)
\(\Rightarrow E(X)=(1.\frac{1}{2})+(2.\frac{1}{2^2})+(3.\frac{1}{2^3})+...\)----(1)
It is arithmetic geometric series. Let us multiply it by the common ratio \(\frac{1}{2}\)of geometric series. We get,
\(\Rightarrow \frac{1}{2}E(X)=(\frac{1}{2}.\frac{1}{2})+(\frac{2}{2}.\frac{1}{2^2})+(\frac{3}{2}.\frac{1}{2^3})+...\)---(2)
Subtracting (2) from (1), We get
\(\Rightarrow \frac{1}{2}E(X)=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\)
\(\Rightarrow \frac{1}{2}E(X)=\frac{\frac{1}{2}}{1-\frac{1}{2}}\) sum of infinite of G.P. with first term a and common ratio r is given by \(S_{\infty}=\frac{a}{1-r}\)
\(\Rightarrow \frac{1}{2}E(X)=\frac{\frac{1}{2}}{\frac{1}{2}}\)
\(\Rightarrow \frac{1}{2}E(X)=1\)
\(\therefore E(X)=2\)
Therefore option 1 is correct.
Mean and Variance of Random variables Question 8:
The sum of the numbers obtained by throwing two identical dice is X. The variance of X will be:
Answer (Detailed Solution Below)
Mean and Variance of Random variables Question 8 Detailed Solution
When two fair dice rolled, 6 × 6 = 36 observations are obtained.
P (x = 2) = P = (1, 1)
P (x = 3) = P (1, 2) + P (2, 1)
P (x = 4) = P (1, 3) + P (3, 1) + P (2, 2)
P (x = 5) = P (1, 4) + P (4, 1) + P (2, 3) + P (3, 2)
P (x = 6) = P (1, 5) + P (5, 1) + P (2, 4) + P (4, 2) + P (3, 3)
P ( x = 7) = P (1, 6) + P (6, 1) + P (2, 5) + P (5, 2) + P (3, 4) + P (4, 3)
P (x = 8) = P (2, 6) + P (6, 2) + P (3, 5) + P (5, 3) + P (4, 4)
P (x = 9) = P (3, 6) + P (6, 3) + P (4, 5) + P (5, 4)
P (x = 10) = P (5, 5) + P (6, 4) + P (4, 6)
P (x = 11) = P (5, 6) + P (6, 5)
P (x = 12) = P (6, 6)
Therefore, the required probability distribution is as follows,
Then, E(x) = ∑xi P (xi)
= {x1. P (x1) + x2 P (x2) + x3 P (x3) + x4 P (x4) + x5 P (x5) + x6 P (x6) + x7 P (x7) + x8 P (x8) + x9 P (x9) + x10 P (x10) + x11 P(x11) + x12 P(x12)}
\( = 0 + \left( {2 \times \frac{1}{{36}}} \right) + \left( {3 \times \frac{1}{{18}}} \right) + \left( {4 \times \frac{1}{{12}}} \right) + \left( {5 \times \frac{1}{9}} \right) + \left( {6 \times \frac{5}{{36}}} \right) + \left( {7 \times \frac{1}{6}} \right)\)
\( + \left( {8 \times \frac{5}{{36}}} \right) + \left( {9 \times \frac{1}{9}} \right) + \left( {10 \times \frac{1}{6}} \right) + \left( {11 \times \frac{1}{{18}}} \right) + \left( {12 \times \frac{1}{{36}}} \right)\)
\( = \left\{ {\frac{1}{{18}} + \frac{1}{6} + \frac{1}{3} + \frac{5}{9} + \frac{5}{6} + \frac{7}{6} + \frac{{10}}{9} + \frac{1}{1} + \frac{5}{3} + \frac{{11}}{{18}} + \frac{1}{3}} \right\}\)
E (x) = 7
⇒ E (x2) = ∑x12 P(xi)
\( = \left( {4 \times \frac{1}{{36}}} \right) + \left( {9 \times \frac{1}{{18}}} \right) + \left( {16 \times \frac{1}{{12}}} \right) + \left( {25 \times \frac{1}{9}} \right) + \left( {36 \times \frac{5}{{36}}} \right) + \left( {49 \times \frac{1}{6}} \right)\)
\( + \left( {64 \times \frac{5}{{36}}} \right) + \left( {81 \times \frac{1}{9}} \right) + \left( {100 \times \frac{1}{6}} \right) + \left( {121 \times \frac{1}{{18}}} \right) + \left( {144 \times \frac{1}{{36}}} \right)\)
\( = \left( {\frac{1}{9} + \frac{1}{2} + \frac{4}{3} + \frac{{25}}{9} + \frac{5}{1} + \frac{{49}}{6} + \frac{{80}}{9} + 9 + \frac{{25}}{3} + \frac{{121}}{{18}} + 4} \right)\)
\( = \frac{{987}}{{18}} = \left( {\frac{{329}}{6}} \right) = 54.833\)
Variance x E(x2) -[E (x)]2
= 54.833 - 49
Variance = 5.833
Mean and Variance of Random variables Question 9:
X is a non-negative integer valued random variable with
\( P(X = x) =\left\{ \begin{matrix} \dfrac {x+1}{2^{(x+2)}} & x = 0, 1, 2... \\\ 0 & \rm{otherwise} \end{matrix} \right.\)
Then, mean and variance of X are respectively
Answer (Detailed Solution Below)
Mean and Variance of Random variables Question 9 Detailed Solution
Concept:
If X is the random variable with probability P(X = x) then mean \((\mu)\) and variance \((\sigma^2)\) of the random variable X is given as
\(\mu=E(X)= \sum_{i=0}^{\infty}x_iP(X=x_i)\)
\(\sigma^2=E(X^2)-\mu^2= \sum_{i=0}^{\infty}x^2_iP(X=x_i)-\mu^2\)
Calculation:
As we have given
\( P(X = x) =\left\{ \begin{matrix} \dfrac {x+1}{2^{(x+2)}} & x = 0, 1, 2... \\\ 0 & \rm{otherwise} \end{matrix} \right.\)
So, mean of above is given as
\(\mu= \displaystyle\sum_{i=0}^{\infty}x\left(\dfrac {x+1}{2^{(x+2)}}\right)= \displaystyle\sum_{i=0}^{\infty}x\left(\dfrac {x+1}{2^x.2^2}\right)\)
\(\mu= \displaystyle\frac{1}{4}\sum_{i=0}^{\infty}\left(\dfrac {x^2+x}{2^x}\right)\)
\(\mu= \displaystyle\frac{1}{4}\left[\sum_{i=0}^{\infty}\left(\dfrac {x^2}{2^x}\right)+\sum_{i=0}^{\infty}\left(\dfrac {x}{2^x}\right)\right]\)
\(\mu=\frac{1}{4}\left[6+2\right]=\frac{8}{4}=2\) ( As \( \displaystyle \sum_{i=0}^{\infty}\left(\dfrac {x}{2^x}\right)=2\) & \( \displaystyle \sum_{i=0}^{\infty}\left(\dfrac {x^2}{2^x}\right)=6\))
Now, the variance is given as
\(\sigma^2== \displaystyle\sum_{i=0}^{\infty}x^2\left(\dfrac {x+1}{2^x.2^2}\right)-\mu^2\)
\(\sigma^2= \displaystyle\frac{1}{4}\left[\sum_{i=0}^{\infty}\left(\dfrac {x^3+x^2}{2^x}\right)\right]-(2)^2\)
\(\sigma^2= \displaystyle\frac{1}{4}\left[\sum_{i=0}^{\infty}\left(\dfrac {x^3}{2^x}\right)+\sum_{i=0}^{\infty}\left(\dfrac {x^3}{2^x}\right)\right]-4\)
\(\sigma^2= \displaystyle\frac{1}{4}\left[26+6\right]-4\) ( As \( \displaystyle \sum_{i=0}^{\infty}\left(\dfrac {x^2}{2^x}\right)=6\) & \( \displaystyle \sum_{i=0}^{\infty}\left(\dfrac {x^3}{2^x}\right)=26\))
\(\sigma^2=\frac{32}{4}-4=8-4=4\)
Hence, the mean and variance of the given probability function is 2 and 4 respectively.
Mean and Variance of Random variables Question 10:
The probability distribution of a discrete random variable X is given as
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) | \(\frac{1}{2}\) | \(\frac{1}{5}\) | \(\frac{3}{25}\) | K | \(\frac{1}{25}\) | \(\frac{1}{25}\) |
Then the value of A if E(X) = 2.94 is
Answer (Detailed Solution Below)
Mean and Variance of Random variables Question 10 Detailed Solution
Concept:
Expected Value of a Discrete Random Variable:
- The expected value, denoted by E(X), of a discrete random variable is the sum of the products of each value of the variable with its corresponding probability.
- Formula: E(X) = Σ [X × P(X)]
- It represents the average outcome over a large number of repetitions of the experiment.
Calculation:
We have,
Σ X × P(X) = 1 × 1/2 + 2 × 2/5 + 4 × 12/25 + 2A × 2/10 + 3A × 3/25 + 5A × 5/25
⇒ Σ X × P(X) = (25 + 20 + 24 + 10A + 6A + 10A) ÷ 50
⇒ Σ X × P(X) = (69 + 26A) ÷ 50
Since E(X) = Σ X × P(X)
⇒ 2.94 = (69 + 26A) ÷ 50
⇒ 26A = 50 × 2.94 − 69
⇒ 26A = 147 − 69
⇒ A = 78 ÷ 26 = 3
∴ The value of A is 3.