Addition Theorem of Events MCQ Quiz in मल्याळम - Objective Question with Answer for Addition Theorem of Events - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 12, 2025

നേടുക Addition Theorem of Events ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Addition Theorem of Events MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Addition Theorem of Events MCQ Objective Questions

Top Addition Theorem of Events MCQ Objective Questions

Addition Theorem of Events Question 1:

Let A and B are two independent events. The probability that both A and B happen is \(\frac{1}{12}\) and probability that neither A nor B happen is \(\frac{1}{2}\) Then

  1. \(\rm P(A)=\frac{1}{3}, P(B)=\frac{1}{4}\)
  2. \(\rm P(A)=\frac{1}{2}, P(B)=\frac{1}{6}\)
  3. \(\rm P(A)=\frac{1}{6}, P(B)=\frac{1}{2}\)
  4. \(\rm P(A)=\frac{2}{3}, P(B)=\frac{1}{8}\)

Answer (Detailed Solution Below)

Option 1 : \(\rm P(A)=\frac{1}{3}, P(B)=\frac{1}{4}\)

Addition Theorem of Events Question 1 Detailed Solution

Calculation

P(A∩B) = \(\frac{1}{12}\) ⇒ P(A)P(B) = \(\frac{1}{12}\) ...(1)

P(A'∩B') = \(\frac{1}{2}\) ⇒ P(A∪B) = 1 - \(\frac{1}{2}\) = \(\frac{1}{2}\)

⇒ P(A) + P(B) - P(A)P(B) = \(\frac{1}{2}\)

⇒ P(A) + P(B) = \(\frac{1}{2}\) + \(\frac{1}{12}\) = \(\frac{7}{12}\)

From (1),

P(A)(\(\frac{7}{12}\) - P(A)) = \(\frac{1}{12}\)

⇒ P(A)² - (\(\frac{7}{12}\))P(A) + \(\frac{1}{12}\) = 0

⇒ 12P(A)² - 7P(A) + 1 = 0

⇒ 12P(A)² - 4P(A) - 3P(A) + 1 = 0

⇒ (3P(A) - 1)(4P(A) - 1) = 0

∴ P(A) = \(\frac{1}{3}\) or P(A) = \(\frac{1}{4}\)

P(B) = \(\frac{1}{12}\) × 3 ⇒ P(B) = \(\frac{1}{4}\)

P(B) = \(\frac{1}{12}\) × 4 ⇒ P(B) = \(\frac{1}{3}\)

∴ P(A) = \(\frac{1}{3}\), P(B) = \(\frac{1}{4}\)

Hence option 1 is correct

Get Free Access Now
Hot Links: teen patti joy apk teen patti master downloadable content rummy teen patti master teen patti teen patti rich