Evaluation of Limits MCQ Quiz in मल्याळम - Objective Question with Answer for Evaluation of Limits - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 14, 2025

നേടുക Evaluation of Limits ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Evaluation of Limits MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Evaluation of Limits MCQ Objective Questions

Evaluation of Limits Question 1:

\(x^{3^n}+y^{3^n}\) എന്നത് x + y കൊണ്ട് ഹരിക്കാൻ കഴിയുമെങ്കിൽ,

  1. n ≥ 0, പൂർണ്ണസംഖ്യ
  2. n എന്നത് ഒരു പോസിറ്റീവ് ഇരട്ട സംഖ്യ മാത്രമാണ്.
  3. n എന്നത് ഒരു പൂർണ്ണസംഖ്യ മാത്രമാണ്.
  4. n എന്നത് ഒരു പോസിറ്റീവ് ഒറ്റ സംഖ്യ മാത്രമാണ്.

Answer (Detailed Solution Below)

Option 1 : n ≥ 0, പൂർണ്ണസംഖ്യ

Evaluation of Limits Question 1 Detailed Solution

വിശദീകരണം:

\(p(n)=x^{3^{n}}+y^{3^{n}}\) എന്നത് x + y കൊണ്ട് ഹരിക്കാൻ കഴിയുമെന്ന് നൽകിയിരിക്കുന്നു.

നമുക്ക് n = 0 എന്ന് ചേർക്കാം, നമുക്ക് ലഭിക്കുന്നത്

\(p(0)=x^{3^{0}}+y^{3^{0}}\)

⇒ p(0) = x + y (∵ a 0 = 1)

⇒ p(0) നെ x + y കൊണ്ട് ഹരിക്കാം

ഇനി, n = 1 എന്ന് പറയാം, നമുക്ക് ലഭിക്കുന്നത്

പി(1) = x 3 + വൈ 3

⇒ p(1) = (x + y)(x 2 + y 2 - xy) [∵ x 3 + y 3 = (x + y)(x 2 + y 2 - xy)]

⇒ p(1) എന്നത് x + y കൊണ്ട് ഹരിക്കാവുന്നതാണ്.

ഇനി, n = 2 എന്ന് പറയാം,

\(p(2)=x^{3^{2}}+y^{3^{2}}\)

⇒ പി(2) = x 9 + y 9

⇒ p(2) = (x 3 + y 3 )(x 6 + y 6 - x 3 y 3 )

⇒ p(2) എന്നത് x + y കൊണ്ട് ഹരിക്കാവുന്നതാണ്.

അതിനാൽ, n ≥ 0 ന്റെ എല്ലാ മൂല്യങ്ങൾക്കും p(n) x + y കൊണ്ട് ഹരിക്കാമെന്ന് നമുക്ക് പറയാൻ കഴിയും, ഇവിടെ n ഒരു പൂർണ്ണസംഖ്യയാണ്.

Top Evaluation of Limits MCQ Objective Questions

\(x^{3^n}+y^{3^n}\) എന്നത് x + y കൊണ്ട് ഹരിക്കാൻ കഴിയുമെങ്കിൽ,

  1. n ≥ 0, പൂർണ്ണസംഖ്യ
  2. n എന്നത് ഒരു പോസിറ്റീവ് ഇരട്ട സംഖ്യ മാത്രമാണ്.
  3. n എന്നത് ഒരു പൂർണ്ണസംഖ്യ മാത്രമാണ്.
  4. n എന്നത് ഒരു പോസിറ്റീവ് ഒറ്റ സംഖ്യ മാത്രമാണ്.

Answer (Detailed Solution Below)

Option 1 : n ≥ 0, പൂർണ്ണസംഖ്യ

Evaluation of Limits Question 2 Detailed Solution

Download Solution PDF

വിശദീകരണം:

\(p(n)=x^{3^{n}}+y^{3^{n}}\) എന്നത് x + y കൊണ്ട് ഹരിക്കാൻ കഴിയുമെന്ന് നൽകിയിരിക്കുന്നു.

നമുക്ക് n = 0 എന്ന് ചേർക്കാം, നമുക്ക് ലഭിക്കുന്നത്

\(p(0)=x^{3^{0}}+y^{3^{0}}\)

⇒ p(0) = x + y (∵ a 0 = 1)

⇒ p(0) നെ x + y കൊണ്ട് ഹരിക്കാം

ഇനി, n = 1 എന്ന് പറയാം, നമുക്ക് ലഭിക്കുന്നത്

പി(1) = x 3 + വൈ 3

⇒ p(1) = (x + y)(x 2 + y 2 - xy) [∵ x 3 + y 3 = (x + y)(x 2 + y 2 - xy)]

⇒ p(1) എന്നത് x + y കൊണ്ട് ഹരിക്കാവുന്നതാണ്.

ഇനി, n = 2 എന്ന് പറയാം,

\(p(2)=x^{3^{2}}+y^{3^{2}}\)

⇒ പി(2) = x 9 + y 9

⇒ p(2) = (x 3 + y 3 )(x 6 + y 6 - x 3 y 3 )

⇒ p(2) എന്നത് x + y കൊണ്ട് ഹരിക്കാവുന്നതാണ്.

അതിനാൽ, n ≥ 0 ന്റെ എല്ലാ മൂല്യങ്ങൾക്കും p(n) x + y കൊണ്ട് ഹരിക്കാമെന്ന് നമുക്ക് പറയാൻ കഴിയും, ഇവിടെ n ഒരു പൂർണ്ണസംഖ്യയാണ്.

Evaluation of Limits Question 3:

\(x^{3^n}+y^{3^n}\) എന്നത് x + y കൊണ്ട് ഹരിക്കാൻ കഴിയുമെങ്കിൽ,

  1. n ≥ 0, പൂർണ്ണസംഖ്യ
  2. n എന്നത് ഒരു പോസിറ്റീവ് ഇരട്ട സംഖ്യ മാത്രമാണ്.
  3. n എന്നത് ഒരു പൂർണ്ണസംഖ്യ മാത്രമാണ്.
  4. n എന്നത് ഒരു പോസിറ്റീവ് ഒറ്റ സംഖ്യ മാത്രമാണ്.

Answer (Detailed Solution Below)

Option 1 : n ≥ 0, പൂർണ്ണസംഖ്യ

Evaluation of Limits Question 3 Detailed Solution

വിശദീകരണം:

\(p(n)=x^{3^{n}}+y^{3^{n}}\) എന്നത് x + y കൊണ്ട് ഹരിക്കാൻ കഴിയുമെന്ന് നൽകിയിരിക്കുന്നു.

നമുക്ക് n = 0 എന്ന് ചേർക്കാം, നമുക്ക് ലഭിക്കുന്നത്

\(p(0)=x^{3^{0}}+y^{3^{0}}\)

⇒ p(0) = x + y (∵ a 0 = 1)

⇒ p(0) നെ x + y കൊണ്ട് ഹരിക്കാം

ഇനി, n = 1 എന്ന് പറയാം, നമുക്ക് ലഭിക്കുന്നത്

പി(1) = x 3 + വൈ 3

⇒ p(1) = (x + y)(x 2 + y 2 - xy) [∵ x 3 + y 3 = (x + y)(x 2 + y 2 - xy)]

⇒ p(1) എന്നത് x + y കൊണ്ട് ഹരിക്കാവുന്നതാണ്.

ഇനി, n = 2 എന്ന് പറയാം,

\(p(2)=x^{3^{2}}+y^{3^{2}}\)

⇒ പി(2) = x 9 + y 9

⇒ p(2) = (x 3 + y 3 )(x 6 + y 6 - x 3 y 3 )

⇒ p(2) എന്നത് x + y കൊണ്ട് ഹരിക്കാവുന്നതാണ്.

അതിനാൽ, n ≥ 0 ന്റെ എല്ലാ മൂല്യങ്ങൾക്കും p(n) x + y കൊണ്ട് ഹരിക്കാമെന്ന് നമുക്ക് പറയാൻ കഴിയും, ഇവിടെ n ഒരു പൂർണ്ണസംഖ്യയാണ്.

Get Free Access Now
Hot Links: teen patti gold teen patti download apk teen patti 50 bonus teen patti cash