Errors and Approximations MCQ Quiz in मल्याळम - Objective Question with Answer for Errors and Approximations - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 12, 2025

നേടുക Errors and Approximations ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Errors and Approximations MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Errors and Approximations MCQ Objective Questions

Top Errors and Approximations MCQ Objective Questions

Errors and Approximations Question 1:

The arm length of a cube is 10 cm. If the error in measuring the length of arm is 0.08 cm, the approximate value of the error in the volume of the cube will be:

  1. 12 cm3
  2. 15 cm3
  3. 24 cm3
  4. cm3

Answer (Detailed Solution Below)

Option 3 : 24 cm3

Errors and Approximations Question 1 Detailed Solution

Concept:

If an expression is A = \(\rm\frac{x^{m}y^{n}}{z^{p}}\)

The error per cent of A ,\(\rm \frac{\Delta A}{A}\) = \(\rm m \frac{\Delta x}{x}\) + \(\rm n\frac{\Delta y}{y}\) + \(\rm p\frac{\Delta z}{z}\)

Calculation:

Given arm length of the cube is 10 cm.

The error in the length of the arm is 0.08 cm.

⇒ Δ L = 0.08

∴ \(\rm\frac{Δ L}{L}=\frac{0.08}{10}\) = 0.008.

We know that the volume of the cube is given by V = l3.

⇒ V = 103 = 1000 cm3

Error in the volume is given by:

⇒ \(\rm \frac{Δ V}{V}=3× \frac{Δ L}{L}\)

⇒ \(\rm \frac{Δ V}{V}\) = 3 × 0.008

⇒ \(\rm \frac{Δ V}{V}\) = 0.024

⇒ Δ V = V × 0.024

⇒ Δ V = 1000 × 0.024

⇒ Δ V = 24

The approximate error in the volume of the cube is 24 cm3.

Errors and Approximations Question 2:

The value of \(\rm (242)^{1/5}\)is.

  1. 2.997
  2. 2.0997
  3. 2.00997
  4. 2.000997

Answer (Detailed Solution Below)

Option 1 : 2.997

Errors and Approximations Question 2 Detailed Solution

Concept: 

Let small charge in x be Δx and the corresponding change in y is Δy.

Therefore \(\rm Δ y = \rm \frac{dy}{dx}Δ x\)

Calculation:

We have to find the value of \(\rm (242)^{1/5}\)

Let x + Δx = 242 = 243 - 1

Therefore, x = 243 and Δx = - 1

Assume, \(\rm y = x^{1/5}\)          

Differentiating with respect to x, we get

\(\rm \Rightarrow \frac{dy}{dx} = \frac{1}{5}x^{-4/5} = \frac{1}{5(x)^{4/5}}\)

At x = 243

\(\rm \left[\frac{dy}{dx} \right ]_{x=243} = \frac{1}{405}\) and y = \((243)^{1/5} = 3\)

As we know \(\rm Δ y = \rm \frac{dy}{dx}Δ x\)

So, \(\rm Δ y = \frac{1}{405} \times (- 1) = 0.0024\)

Therefore, approximate value of \(\rm (242)^{1/5}\) = y + Δy = 3 - 0.0024 = 2.997

Errors and Approximations Question 3:

The value of \(\sqrt{36.01}\) is

  1. 6.0833
  2. 6.00833
  3. 6.000833
  4. 6.0000833

Answer (Detailed Solution Below)

Option 3 : 6.000833

Errors and Approximations Question 3 Detailed Solution

Concept: 

Let small change in x be Δx and the corresponding change in y is Δy.

Therefore \(\rm Δ y = \rm \frac{dy}{dx}Δ x\)

Calculation:

We have to find the value of \(\sqrt{36.01}\)

Let x + Δx = 36.01 = 36 + 0.01

Therefore, x = 36 and Δx = -0.01

Assume, \(\rm y = x^{1/2}\)          

Differentiating with respect to x, we get

\(\rm \Rightarrow \frac{dy}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt x}\)

At x = 36

\(\rm \left[\frac{dy}{dx} \right ]_{x=36} = \frac{1}{12}\) and y = \(\rm (36)^{1/2} = 6\)

As we know \(\rm Δ y = \rm \frac{dy}{dx}Δ x\)

So, \(\rm Δ y = \frac{1}{12} \times (0.01) = 0.000833\)

Therefore, approximate value of \(\sqrt{36.01} = (36.01)^{1/2}\) = y + Δy = 6 + 0.00083 = 6.00083

Get Free Access Now
Hot Links: teen patti rules teen patti gold download apk online teen patti real money teen patti master 51 bonus teen patti pro